Page 15 - A Course in Linear Algebra with Applications
P. 15

xiv                          Contents

          Chapter   Four      Introduction    to  Vector  Spaces

              4.1  Examples  of  Vector  Spaces                        87
              4.2  Vector  Spaces  and  Subspaces                      95
              4.3  Linear  Independence  in  Vector  Spaces           104



          Chapter    Five    Basis  and   Dimension

               5.1  The  Existence  of  a  Basis                      112
               5.2  The  Row  and  Column  Spaces  of  a  Matrix      126
               5.3  Operations  with  Subspaces                       133



          Chapter    Six    Linear   Transformations
               6.1  Functions  Defined  on  Sets                      152
              6.2  Linear  Transformations  and  Matrices             158
              6.3  Kernel,  Image  and  Isomorphism                   178



          Chapter    Seven     Orthogonality     in  Vector  Spaces

               7.1  Scalar  Products  in  Euclidean  Space            193
               7.2  Inner  Product  Spaces                            209
               7.3  Orthonormal  Sets  and  the  Gram-Schmidt
                   Process                                            226
               7.4  The  Method  of  Least  Squares                   241



          Chapter    Eight     Eigenvectors    and  Eigenvalues

               8.1  Basic  Theory  of  Eigenvectors  and  Eigenvalues  257
               8.2  Applications  to  Systems  of  Linear  Recurrences  276
               8.3  Applications  to  Systems  of  Linear  Differential
                   Equations                                          288
   10   11   12   13   14   15   16   17   18   19   20