Page 183 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 183

180   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                                                   0
                           By choosing x 0 i+1  = 0and u = 0, then Eq. (11.4) can be rewritten as
                                                 ∂f i (¯x i ,x i+1 )
                            f i (¯x i ,x i+1 ) =f i (¯x i ,0) +  |  λ i × x i+1 ,1 ≤ i ≤ n − 1,
                                                   ∂x i+1  x i+1 =x i+1             (11.5)
                                                  ∂f n (¯x n ,u)
                              f n (¯x n ,u) =f n (¯x n ,0) +  | u=u n × u.
                                                          λ
                                                    ∂u
                           For analysis convenience, it is defined that
                                         g i (¯x i ,x λ i  ) =  ∂f i (¯x i ,x i+1 ) | x i+1 =x λ i
                                              i+1
                                                         ∂x i+1
                                                       ∂f n (¯x n ,u)  i+1          (11.6)
                                               λ n
                                         g n (¯x n ,u ) =    | u=u n ,
                                                                λ
                                                         ∂u
                        which are unknown non-linear functions.
                           Based on (11.5), the original system (11.1)isreformulatedasastrict-
                        feedback system. Hence, we can further represent this system into the
                        Brunovsky form with respect to the newly defined state variables as [8,9].
                        Hence, we define a set of new coordinates as
                                           z 1  =   y
                                                                                    (11.7)
                                           z 2  =   ˙ z 1 = f 1 + g 1x 2 .
                           Thetimederivativeof z 2 is derived as

                                 ∂f 1   ∂g 1            ∂f 1  ∂g 1
                          ˙ z 2  =  ˙ x 1 +  ˙ x 1x 2 + g 1 ˙x 2 = (  +  x 2 )(f 1 + g 1x 2 ) + g 1f 2 + g 1g 2x 3
                                 ∂x 1   ∂x 1            ∂x 1  ∂x 1
                               a 2 (¯x 2 ) + b 2 (¯x 2 )x 3                         (11.8)
                        where a 2 (¯x 2 ) = (  ∂f 1  +  ∂g 1  x 2 )(f 1 + g 1x 2 ) + g 1f 2 and b n (¯x 2 ) = g 1g 2.
                                       ∂x 1  ∂x 1
                           Again, let z 3 = a 2 + b 2x 3, and its time derivative is

                                          2  ∂a 2    2  ∂b 2
                                ˙ z 3  =       ˙ x j +    ˙ x jx 3 + b 2 ˙x 3
                                          j=1 ∂x j   j=1 ∂x j
                                          2

                                    =       (  ∂a 2  +  ∂b 2  x 3 )(f j + g jx j+1 ) + b 2 (f 3 + g 3x 4 )  (11.9)
                                          j=1 ∂x j  ∂x j
                                      a 3 (¯x 3 ) + b 3 (¯x 3 )x 4
                                         2

                        where a 3 (¯x 3 ) =  (  ∂a 2  +  ∂b 2  x 3 )(f j + g jx j+1 ) + b 2f 3 and b 3 (¯x 3 ) = b 2g 3 =
                                         j=1 ∂x j  ∂x j
                        g 1g 2g 3.
                           Similar to the above derivations, for i = 2,...,n,wecanhave

                                        z i      a i−1 (¯x i−1 ) + b i−1 (¯x i−1 )x i
                                                                                   (11.10)
                                         ˙ z i  =  a i (¯x i ) + b i (¯x i )x i+1
                        where x n+1 = u and
                                 a i (¯x i )      i−1 ∂a i−1  +  ∂b i−1
                                               (
                                             j=1  ∂x j  ∂x j  x i )(f j + g jx j+1 ) + b i−1f i
                                                    i                              (11.11)
                                                      g

                                 b i (¯x i )   b i−1g i =  j=1 j .
   178   179   180   181   182   183   184   185   186   187   188