Page 239 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 239

Adaptive Neural Dynamic Surface Control for Pure-Feedback Systems With Input Saturation  239


                            pressed as follows:

                                    s ˙ 1 = s 2 + y 2 − k 1s 1
                                    s ˙ 2 = s 3 + y 3 − k 2s 2 − s 1 − β 2
                                                          ˙
                                       .
                                       .
                                       .
                                                                                      (15.48)
                                                             ˙
                                    ˙ s i = s i+1 + y i+1 − k is i − s i−1 − β i ,  i = 3,...n − 1
                                       .
                                       .
                                       .
                                    s ˙ n  =−k ns n − s n−1 − ˜ W φ (¯x n ) + ε − ε N tanh(s n /δ).
                                                       T
                                    b
                               Moreover, we can verify the fact that

                                                                  s
                                                    ˙
                                                ˙
                                            ˙ y 2 = β 2 − ¯z 2 =−  y 2  − −k 1 ˙ 1 +¨y d − λ˙e
                                                          τ 2                         (15.49)
                                                  y 2
                                              =−    + B 2 s 1 ,s 2 ,y 2 ,y d , ˙y d , ¨y d
                                                  τ 2

                            where B 2 s 1 ,s 2 ,y 2 ,y d , ˙y d , ¨y d =− −k 1 ˙s 1 +¨y d − λ˙e , which is a continuous
                            function.
                               Similarly, for i = 2,...n − 1, we have
                                     y i+1             y i+1
                                                s
                                            s
                              ˙ y i+1 =−  + k i ˙ i −¨ i−1 =−  + B i+1 s 1 ,...,s i+1 ,y 2 ,...y iy d , ˙y d , ¨y d .
                                     τ i+1             τ i+1
                                                                                      (15.50)
                               Consider the Lyapunov function as
                                        n−1
                                       1    
  2  2     1  2  1  T  −1     1  2
                                                                      ˜
                                                               ˜
                                  V =       s + y i+1  +  s + W   W +        ˜ ε .    (15.51)
                                                                              N
                                                         n
                                             i
                                       2              2b     2            2  ε
                                         i=1
                               Then the derivative of the Lyapunov function can be obtained as
                                 n−1
                                                   1                  1

                                                            T  −1 ˙        ˙
                                                      s
                                      s
                                                                  ˆ
                             ˙ V =   s i ˙ i + y i+1 ˙y i+1 + s n ˙ n + ˜ W   W +  ˜ ε N ˆε N
                                                   b                    ε
                                 i=1
                                             n−1
                                  n                     y 2
                               =    
 −k is 2 i     +  s iy i+1 −  i+1  + B i+1y i+1
                                                        τ i+1
                                 i=1         i=1
                                                                               1
                                                                     T  −1 ˙       ˙
                                                                          ˆ
                                + s n − ˜ Wφ (¯x n ) + ε − ε N tanh(s n /δ) + ˜ W   W +  ˜ ε N ˆε N
                                                                                ε
                                  n          n−1         2
                                                        y i+1
                                         2


                               ≤     −k is  +    s iy i+1 −  + B i+1y i+1 + s n ε N − ε N tanh(s n /δ)
                                         i
                                                        τ i+1
                                 i=1         i=1
                                             1
                                      T          ˙
                                        ˆ
                                − σ ˜ W W +    ˜ ε N ˆε N
                                              ε
   234   235   236   237   238   239   240   241   242   243   244