Page 240 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 240

240   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics

                              n          n−1        y 2
                           ≤    
 −k is 2     +     s iy i+1 −  i+1  + B i+1y i+1 + ε N (|s n |−s n tanh(s n /δ))
                                     i
                                                    τ i+1
                              i=1        i=1
                                                                       1
                                ∗                                T  ˆ       ˙
                             + ε s n tanh(s n /δ) − s n ˆε N tanh(s n /δ) − σ ˜ W W +
                                N                                        ˜ ε N ˆε N
                                                                         ε
                                         n−1
                              n                     y 2
                           =    
 −k is 2 i     +  s iy i+1 −  i+1  + B i+1y i+1
                                                     τ i+1
                              i=1        i=1
                                                        T
                                                          ˆ
                             + ε N (|s n |−s n tanh(s n /δ)) − σ ˜ W W.            (15.52)
                           By using the following property with respect to function tanh(·),we
                        have
                                                          x

                                           0 ≤ |x| − xtanh   ≤ 0.2785δ.            (15.53)
                                                          δ
                           Using the fact
                                                                      2

                                                                                   ∗
                                                                             ˜
                                                                   ˜
                             −σ ˜ W W  ≤−σ ˜ W  T   ˜ W + W  ∗  ≤−σ  W  + σ  W   W
                                  T ˆ




                                                   2        2

                                                 ˜     σ    ˜     σ  2
                                       ≤−σ  W  +         W  + W
                                                      2         2  N
                                                    2
                                                      σ
                                       ≤−  W  + W         2                        (15.54)
                                                ˜

                                             σ
                                             2        2   N
                        and substituting (15.53)and (15.54)into(15.52), we can obtain
                               n          n−1        y 2                          σ
                                                                                      2
                           ˙ V ≤    
 −k is 2     +     s iy i+1 −  i+1  + B i+1y i+1 + 0.2785ε N δ +  W .
                                      i                                              N
                                                      τ i+1                       2
                               i=1        i=1
                                                                                   (15.55)
                                            1 2
                                         2
                           Using the fact s + y  ≥ s iy i+1,wehave
                                         i
                                            4 i+1
                                       n          n−1     1      y 2
                                                       2
                                  ˙ V ≤    
 −k is 2     +     s + y 2  −  i+1  + B i+1y i+1
                                              i        i  4  i+1
                                      i=1         i=1             τ i+1
                                                   σ   2
                                      + 0.2785ε N δ +  W .                         (15.56)
                                                       N
                                                    2
                           We can choose the parameters as k i = 1 + α 0 ,i = 1,...,n − 1; k n = α 0,
                                       2
                                  1
                        and  1  = +  M i+1  + α 0,where α 0 and η are positive constants and |B i+1 | ≤
                            τ i+1  4  2η
                                                               
          2   2    2

                        M i+1. As pointed out in [1], the sets  := y d , ˙y d , ¨y d : y +˙y +¨y ≤ B 0
                                                                          d   d    d

                                       2
                                                1 2
                                                       T

                                                          −1 ˜
                        and     :=  i−1 
 s + y 2    + s + ˜ W   W +  1  ˜ ε 2  ≤ 2p, i = 2,...,n,for
                              i        i   i+1  b n                ε N
                                   j=1
   235   236   237   238   239   240   241   242   243   244   245