Page 885 - Advanced_Engineering_Mathematics o'neil
P. 885

Answers to Selected Problems  865


                                           (1 −|t|)cos(πt/2)  Im(T (z)T (it))
                                          −1
                             7. u(x, y) =        2                             dt
                                        1   1 + sin (πt/2)  1 − 2Re(T (z)T (it)) +|T (z)| 2
                            Section 23.4 Models of Plane Fluid Flow
                                         iθ
                             1. With a = Ke write
                                                         iθ
                                              f (z) = az = Ke (x + iy) = K(x cos(θ) − y sin(θ)) + iK(x sin(θ) + y cos(θ)).
                                Equipotential curves: x cos(θ) − y sin(θ) = c.
                                Streamlines: x sin(θ) + y cos(θ) = k. There are no stagnation points, hence no sinks or sources.
                             3. f (z) = cos(x)cosh(y) − i sin(x)sinh(y). Equipotential curves are graphs of cos(x)cosh(y) = c, and streamlines are
                                graphs of sin(x)sinh(y) − k. Each point (nπ,0) with n any integer is a stagnation point.
                             5. f (z) = K log(z − z 0 ) = K ln|z − z 0 |+ i arg(z − z 0 ). Equipotential curves are graphs of K ln|z − z 0 |= c, concentric
                                circles about z 0 , streamlines are graphs of arg(z − z 0 ) = k, which are half-lines from z 0 . z 0 is a source if K > 0, a sink
                                if K < 0.
                             7. Write f (z) = K(x + iy + 1)/(x + iy) to obtain the equipotential curves as graphs of
                                                                       2
                                                                          2
                                                                   Kx(x + y + 1)
                                                                               = c
                                                                       2
                                                                      x + y  2
                                and streamlines as graphs of
                                                                          2
                                                                      2
                                                                   ky(x + y − 1)
                                                                               = k.
                                                                       2
                                                                      x + y 2
                             9. In polar coordinates, equipotential curves are graphs (in polar coordinates) of
                                                                             b
                                                                      2
                                                               K cos(θ)(r + 1) −  rθ = c,r
                                                                             2π
                                and streamlines are graphs of
                                                                            b
                                                                     2           2
                                                             K sin(θ)(r − 1) +  r ln(r ) = c 2 r
                                                                           4π
                                There are stagnation points where f (z) = 0, as


                                                                     ib          b  2
                                                               z =−     ± 1 −
                                                                                 2
                                                                    4Kπ       16π K  2
                            11. Compute
                                                                            9aK  2
                                                                  2
                                                                          √   2    √   2
                                                              | f (z)| =
                                                                         ia 3     ia 3
                                                                      z −      z +
                                                                          2        2
                                Use the residue theorem to compute
                                                                                       2
                                                                                     4
                                                                 1               18πa K ρ
                                                                           2

                                                          A − Bi = iρ  | f (z)| dz =−  √  i,
                                                                 2   γ             3 3a 3
                                yielding the vertical component B of the thrust.











                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

                                   October 14, 2010  17:50  THM/NEIL    Page-865        27410_25_Ans_p801-866
   880   881   882   883   884   885   886   887   888   889   890