Page 882 - Advanced_Engineering_Mathematics o'neil
P. 882
862 Answers to Selected Problems
Using this, obtain
∞ ∞ n
1 2n 1 2π z ze iθ iθ
z = e e dθ
(n!) 2 2π n!e i(n+1)θ
n=0 0 n=0
1 2π 1 2π
= e z(e iθ +e iθ ) ,dθ = e 2z cos(θ) dθ.
2π 0 2π 0
19. 4 21. 3 23. 2
25. Show that
f (n) (z 0 )
a n = = b n for n = 0,1,2,··· .
n!
Section 21.2 The Laurent Expansion
1 1 ∞ (−1) n
1. + n=0 (z − i) for 0 < |z − i| < 2
n
z − i 2i (2i) n
4
∞ (−1) n+1 n
3. z 2n−2 ,0 < |z| < ∞
n=1
(2n)!
1
5. − − 2 − (z − 1),0 < |z − 1| < ∞
z − 1
∞ 1
7. n=1 z 2n−2 ,0 < |z| < ∞
n!
2i
9. 1 + ,0 < |z − i| < ∞
z − i
CHAPTER TWENTY TWO SINGULARITIES AND THE RESIDUE THEOREM
Section 22.1 Singularities
1. Pole of order 2 at 0 3. Essential singularity at 0
5. Simple poles at i,−i and a double pole at 1
7. Removable singularity at i, simple pole at −i
9. Simple poles at 1,−1,i,−i
11. Simple poles at (2n + 1)π/2for n any integer
Section 22.2 The Residue Theorem
1. 2πi 3. 0 5. 2πi 7. 2πi
9. −πi/4 11. 0 13. 2πi
15. π[cos(8) − 1 + i sin(8)]/2 19. 2πi 21. 2πi
section 22.3 Evaluation of Real Integrals
√
1. 2π/ 3
3. π/3
√ √
5. πe −2 2 sin 2 2 /4
−4
7. π(1 + 5e )/32
9. π/4
iαz
−α
2
11. e /(z + 1) has one singularity in the upper half-plane and a simple pole at i. Compute the residue at i to be πe .
iθ
13. With z = e , substitute for cos(θ),sin(θ) and dz to obtain
1
2π
dθ
2
2
2
2
0 α cos (θ) + β sin (θ)
4 z
= dz.
2
2
2
2
2
i |z|=1 (α − β )z + 2(α + β )z + (α − β )
2
4
2
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-862 27410_25_Ans_p801-866

