Page 882 - Advanced_Engineering_Mathematics o'neil
P. 882

862    Answers to Selected Problems

                        Using this, obtain
                                              ∞                ∞     n
                                                  1  2n  1   2π     z    ze iθ  iθ
                                                    z =                 e  e dθ
                                                 (n!) 2  2π       n!e i(n+1)θ
                                              n=0           0  n=0
                                                         1     2π          1     2π
                                                       =       e z(e iθ +e iθ ) ,dθ =  e 2z cos(θ) dθ.
                                                         2π  0            2π  0
                     19. 4   21. 3   23. 2
                     25. Show that
                                                         f  (n) (z 0 )
                                                     a n =     = b n for n = 0,1,2,··· .
                                                           n!

                     Section 21.2 The Laurent Expansion
                         1    1   ∞ (−1) n
                     1.     +     n=0    (z − i) for 0 < |z − i| < 2
                                             n
                        z − i  2i   (2i) n
                                  4
                         ∞ (−1) n+1 n

                     3.            z 2n−2 ,0 < |z| < ∞
                         n=1
                              (2n)!
                          1
                     5. −    − 2 − (z − 1),0 < |z − 1| < ∞
                         z − 1
                         ∞ 1

                     7.  n=1  z 2n−2 ,0 < |z| < ∞
                            n!
                           2i
                     9. 1 +   ,0 < |z − i| < ∞
                           z − i
                     CHAPTER TWENTY TWO SINGULARITIES AND THE RESIDUE THEOREM
                     Section 22.1 Singularities
                      1. Pole of order 2 at 0  3. Essential singularity at 0
                      5. Simple poles at i,−i and a double pole at 1
                      7. Removable singularity at i, simple pole at −i
                      9. Simple poles at 1,−1,i,−i
                     11. Simple poles at (2n + 1)π/2for n any integer

                     Section 22.2 The Residue Theorem
                      1. 2πi   3. 0   5. 2πi   7. 2πi
                      9. −πi/4   11. 0   13. 2πi
                     15. π[cos(8) − 1 + i sin(8)]/2  19. 2πi  21. 2πi

                     section 22.3 Evaluation of Real Integrals
                           √
                      1. 2π/ 3
                      3. π/3
                            √      √
                      5. πe −2 2  sin 2 2 /4
                               −4
                      7. π(1 + 5e )/32
                      9. π/4
                         iαz
                                                                                                         −α
                             2
                     11. e /(z + 1) has one singularity in the upper half-plane and a simple pole at i. Compute the residue at i to be πe .
                                iθ
                     13. With z = e , substitute for cos(θ),sin(θ) and dz to obtain
                                                           1
                                                  2π
                                                                    dθ
                                                                 2
                                                    2
                                                              2
                                                        2
                                                0  α cos (θ) + β sin (θ)
                                                 4                   z
                                                =                                   dz.
                                                                    2
                                                                              2
                                                                                  2
                                                                        2
                                                                          2
                                                  i  |z|=1 (α − β )z + 2(α + β )z + (α − β )
                                                         2
                                                               4
                                                            2
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-862        27410_25_Ans_p801-866
   877   878   879   880   881   882   883   884   885   886   887