Page 879 - Advanced_Engineering_Mathematics o'neil
P. 879
Answers to Selected Problems 859
where
1 2 n 2 m
a nm = (1 − (−1) ) (1 − (−1) ),
sinh(π n π + m /4) nπ mπ
2
2
2
8 1 − (−1) n 1 − (−1) m
c nm = √
2
2
2
sinh(2π n π + m ) nπ mπ
Section 18.7 Steady-State Equation for a Sphere
ρ n
2
1. u(ρ,ϕ) = ∞ (2n + 1)A 1 (arccos(ξ)) P n (ξ) P n (cos(ϕ))
n=0
2 −1 R
ρ ρ
2
≈ 2.9348A − 3.7011A P 1 (cos(ϕ)) + 1.1111A P 2 (cos(ϕ))
R R
ρ ρ
3 4
−0.5397A P 3 (cos(ϕ)) + 0.3200A P 4 (cos(ϕ))
R R
ρ 5
−0.2120A P 5 (cos(ϕ)) +···
R
ρ
3. u(ρ,ϕ) ≈ 6.0784 − 9.8602 P 1 (cos(ϕ))
R
ρ ρ
2 3
+5.2360 P 2 (cos(ϕ)) − 2.4044 P 3 (cos(ϕ))
R R
ρ ρ
4 5
+1.5080 P 4 (cos(ϕ)) − 0.9783 P 5 (cos(ϕ)) + ···
R R
T 1 R 1 1
5. u(ρ,ϕ) = R 2 − 1
R 2 − R 1 ρ
Section 18.8 The Neumann Problem
4
1. u(x, y) = c 0 − cosh(π(1 − y))cos(πx)
π sinh(π)
n
cosh(3(π − y)) ∞ 12((−1) − 1)
3. u(x, y) = c 0 − cos(3x) + n=1 cosh(ny)cos(nx)
3
3sinh(π) n π sinh(nπ)
2
2
n
2
n
∞
5. u(x, y) = [n π (−1) + 6(1 − (−1) )]cosh(nπ(1 − x))sin(nπy)
n=1 4 4
n π sinh(nπ)
1 R r 2
7. u(r,θ) = a 0 + cos(2θ)
2 2 R
2
2
1 ∞
9. u(x, y) = ln(y + 9(ξ − y) )ξe −|ξ| sin(ξ)dξ
2π −∞
11.
∞
u(x, y) = a ω cos(ωx)e −ωy dω
0
with
2 ∞
a ω =− f (ξ)cos(ωξ)dξ
πω 0
CHAPTER NINETEEN COMPLEX NUMBERS AND FUNCTIONS
Section 19.1 Geometry and Arithmetic of Complex Numbers
1. 26 − 18i 3. (1 + 18i)/65 5. 4 + 228i 7. 6 − i
9. (−1632 + 2024i)/4225 11. π/2 + 2kπ, k any integer; |3i|= 3
√
13. |− 3 + 2i|= 13; arctan(−2/3) + π + 2kπ 15. |− 4|= 4; π + 2kπ
√ √
17. 2 2e 3πi/4 19. 29e i arctan(−2/5)
√
21. 65e i(arctan(1/8))
2n
2 2n
4n
23. i = (i ) = (−1) = 1,i 4n+1 = i, i 4n+2 =−1, i 4n+3 =−i
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-859 27410_25_Ans_p801-866

