Page 879 - Advanced_Engineering_Mathematics o'neil
P. 879

Answers to Selected Problems  859


                                where
                                                                1         2        n  2       m
                                                   a nm =                  (1 − (−1) )  (1 − (−1) ),
                                                        sinh(π n π + m /4) nπ       mπ
                                                               2
                                                                     2
                                                                 2
                                                               8          1 − (−1) n     1 − (−1) m
                                                    c nm =    √
                                                                2
                                                                  2
                                                                      2
                                                        sinh(2π n π + m )   nπ        mπ
                            Section 18.7 Steady-State Equation for a Sphere
                                                                         ρ    n
                                                                2
                             1.  u(ρ,ϕ) =    ∞ (2n + 1)A    1  (arccos(ξ)) P n (ξ)  P n (cos(ϕ))
                                          n=0
                                                2     −1               R
                                                        ρ                    ρ
                                                                                2
                                      ≈ 2.9348A − 3.7011A  P 1 (cos(ϕ)) + 1.1111A  P 2 (cos(ϕ))
                                                        R                    R
                                                 ρ                    ρ
                                                     3                    4
                                        −0.5397A     P 3 (cos(ϕ)) + 0.3200A  P 4 (cos(ϕ))
                                                 R                    R
                                                   ρ    5
                                        −0.2120A     P 5 (cos(ϕ)) +···
                                                 R
                                                      ρ
                             3.  u(ρ,ϕ) ≈ 6.0784 − 9.8602  P 1 (cos(ϕ))
                                                      R
                                                ρ                   ρ
                                                    2                  3
                                        +5.2360    P 2 (cos(ϕ)) − 2.4044  P 3 (cos(ϕ))
                                                R                   R
                                                ρ                   ρ
                                                    4                  5
                                        +1.5080    P 4 (cos(ϕ)) − 0.9783  P 5 (cos(ϕ)) + ···
                                                R                   R

                                        T 1 R 1  1
                             5. u(ρ,ϕ) =        R 2 − 1
                                       R 2 − R 1  ρ
                            Section 18.8 The Neumann Problem
                                              4
                             1. u(x, y) = c 0 −   cosh(π(1 − y))cos(πx)
                                          π sinh(π)
                                                                        n
                                          cosh(3(π − y))        ∞ 12((−1) − 1)
                             3. u(x, y) = c 0 −       cos(3x) +  n=1         cosh(ny)cos(nx)
                                                                   3
                                             3sinh(π)             n π sinh(nπ)
                                                2
                                                       2
                                                              n
                                                         2
                                                                        n
                                         ∞
                             5. u(x, y) =             [n π (−1) + 6(1 − (−1) )]cosh(nπ(1 − x))sin(nπy)
                                         n=1  4  4
                                           n π sinh(nπ)
                                       1    R     r    2
                             7. u(r,θ) = a 0 +    cos(2θ)
                                       2    2  R
                                                         2
                                                2
                                        1    ∞
                             9. u(x, y) =    ln(y + 9(ξ − y) )ξe −|ξ|  sin(ξ)dξ
                                       2π  −∞
                            11.
                                                                       ∞

                                                              u(x, y) =  a ω cos(ωx)e −ωy  dω
                                                                      0
                                with
                                                                    2     ∞
                                                              a ω =−      f (ξ)cos(ωξ)dξ
                                                                    πω  0
                            CHAPTER NINETEEN COMPLEX NUMBERS AND FUNCTIONS
                            Section 19.1 Geometry and Arithmetic of Complex Numbers
                             1. 26 − 18i  3. (1 + 18i)/65  5. 4 + 228i  7. 6 − i
                             9. (−1632 + 2024i)/4225  11. π/2 + 2kπ, k any integer; |3i|= 3
                                         √
                            13. |− 3 + 2i|=  13; arctan(−2/3) + π + 2kπ  15. |− 4|= 4; π + 2kπ
                                √             √
                            17. 2 2e  3πi/4  19.  29e i arctan(−2/5)
                                √
                            21.  65e  i(arctan(1/8))
                                             2n
                                     2 2n
                                4n
                            23. i = (i ) = (−1) = 1,i  4n+1  = i, i  4n+2  =−1, i  4n+3  =−i
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-859        27410_25_Ans_p801-866
   874   875   876   877   878   879   880   881   882   883   884