Page 881 - Advanced_Engineering_Mathematics o'neil
P. 881

Answers to Selected Problems  861


                            Section 19.4 The Complex Logarithm
                             1. ln(4) + i(3π/2 + 2nπ), with n any integer.
                                                        √
                             3. ln(5) + (2n + 1)πi  5.  1  ln  85 + (arctan(−2/9) + (2n + 1)π)i
                                                   2
                            Section 19.5 Powers
                             1. ie −(π/2+2nπ)  3. e −(π/2+2nπ)
                                      	         √              √
                             5. e 9π/4+6nπ  cos 3ln 2 2  − i sin 3ln 2 2
                             7. e i(π+4nπ)/8 , n = 0,1,2,3  9. 16e (2n+1)π  [cos(ln(4)) − i sin(ln(4))]
                            11. 2e  (2n+1)πi/4 , n = 0,1,2,3
                            13. e nπi/3 , n = 0,1,2,3,4,5

                            CHAPTER TWENTY COMPLEX INTEGRATION
                            Section 20.1 The Integral of a Complex Function
                             1. 8 − 2i  3.  3 (1 + i)  5. −  13  + 2i
                                          2             2
                                 1
                             7. − [cosh(8) − cosh(2)]  9. −cos(2)sinh(1) − i sin(2)cosh(1)
                                 2
                            11. 10 + 210i  13. 25i/2  15.  2 3 (1 + i)
                                           √
                            17. One bound is 1/ 2. Any larger number is also a bound.
                            Section 20.2 Cauchy’s Theorem
                             1. 0 by Cauchy’s theorem  3. 0  5. 2πi
                             7. 0   9. 0   11. 4πi

                            Section 20.3 Consequences of Cauchy’s Theorem
                                                              2
                             1. 32πi   3. 2πi(−8 + 7i)  5. −2πe [cos(1) − sin(1)i]
                             7. πi[6cos(12) − 36sin(12)]  9. −512π(1 − 2i)cos(256)
                                 13
                            11. −  − 39i   13. 2π
                                 2
                            CHAPTER TWENTY ONE SERIES REPRESENTATIONS OF FUNCTIONS
                            Section 21.1 Power Series
                             1. Radius 2, open disk |z + 3i| < 2  3. 1/e, |z − 1 + 3i| < 1/e
                             5. 2,|z + 8i| < 2  7. No (zero is further from 2i than i is)
                                 ∞ (−1) n
                                          2n 2n

                             9.          2 z for |z| < ∞
                                 n=0
                                    (2n)!
                            11. −3 + (1 − 2i)(z − 2 + i) + (z − 2 + i) 2
                                    2
                            13. z − 9) = 63 − 16i + (−16 + 2i)(z − 1 − i) + (z − 1 − i) 2
                                      3    2i    6    4i
                                              3
                                                   4
                                        2
                            15. 1 + iz + z +  z +  z +  z 5
                                      2    3!    4!   5!
                            17. First expand e zw  in a Maclaurin series to write
                                                                               ∞
                                                        1      z n        1        z n+k w  k−n−1
                                                                   zw
                                                                  e dw =                  dw.
                                                       2πi  γ n!w n+1    2πi        n!k!
                                                                              γ
                                                                               k=0
                                             θ
                                Parametrize w = e for 0 ≤ θ ≤ 2π in this integral to obtain
                                                                1     z  n       (z )
                                                                                  n 2
                                                                           zw
                                                                          e dw =     .
                                                               2πi  γ n!w n+1    (n!) 2
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-861        27410_25_Ans_p801-866
   876   877   878   879   880   881   882   883   884   885   886