Page 881 - Advanced_Engineering_Mathematics o'neil
P. 881
Answers to Selected Problems 861
Section 19.4 The Complex Logarithm
1. ln(4) + i(3π/2 + 2nπ), with n any integer.
√
3. ln(5) + (2n + 1)πi 5. 1 ln 85 + (arctan(−2/9) + (2n + 1)π)i
2
Section 19.5 Powers
1. ie −(π/2+2nπ) 3. e −(π/2+2nπ)
√ √
5. e 9π/4+6nπ cos 3ln 2 2 − i sin 3ln 2 2
7. e i(π+4nπ)/8 , n = 0,1,2,3 9. 16e (2n+1)π [cos(ln(4)) − i sin(ln(4))]
11. 2e (2n+1)πi/4 , n = 0,1,2,3
13. e nπi/3 , n = 0,1,2,3,4,5
CHAPTER TWENTY COMPLEX INTEGRATION
Section 20.1 The Integral of a Complex Function
1. 8 − 2i 3. 3 (1 + i) 5. − 13 + 2i
2 2
1
7. − [cosh(8) − cosh(2)] 9. −cos(2)sinh(1) − i sin(2)cosh(1)
2
11. 10 + 210i 13. 25i/2 15. 2 3 (1 + i)
√
17. One bound is 1/ 2. Any larger number is also a bound.
Section 20.2 Cauchy’s Theorem
1. 0 by Cauchy’s theorem 3. 0 5. 2πi
7. 0 9. 0 11. 4πi
Section 20.3 Consequences of Cauchy’s Theorem
2
1. 32πi 3. 2πi(−8 + 7i) 5. −2πe [cos(1) − sin(1)i]
7. πi[6cos(12) − 36sin(12)] 9. −512π(1 − 2i)cos(256)
13
11. − − 39i 13. 2π
2
CHAPTER TWENTY ONE SERIES REPRESENTATIONS OF FUNCTIONS
Section 21.1 Power Series
1. Radius 2, open disk |z + 3i| < 2 3. 1/e, |z − 1 + 3i| < 1/e
5. 2,|z + 8i| < 2 7. No (zero is further from 2i than i is)
∞ (−1) n
2n 2n
9. 2 z for |z| < ∞
n=0
(2n)!
11. −3 + (1 − 2i)(z − 2 + i) + (z − 2 + i) 2
2
13. z − 9) = 63 − 16i + (−16 + 2i)(z − 1 − i) + (z − 1 − i) 2
3 2i 6 4i
3
4
2
15. 1 + iz + z + z + z + z 5
2 3! 4! 5!
17. First expand e zw in a Maclaurin series to write
∞
1 z n 1 z n+k w k−n−1
zw
e dw = dw.
2πi γ n!w n+1 2πi n!k!
γ
k=0
θ
Parametrize w = e for 0 ≤ θ ≤ 2π in this integral to obtain
1 z n (z )
n 2
zw
e dw = .
2πi γ n!w n+1 (n!) 2
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-861 27410_25_Ans_p801-866

