Page 875 - Advanced_Engineering_Mathematics o'neil
P. 875

Answers to Selected Problems  855


                                where
                                                                         −16L
                                                               d n =                 .
                                                                                2
                                                                  (2n − 1)π[(2n − 1) − 4]
                                       2         4
                                         2
                             5. u(x,t) = π −  ∞   cos(nx)e −4n 2 t
                                              n=1
                                       3        n  2
                                                            −6
                                       1                 1 − e (−1) n
                                            −6
                             7. u(x,t) = (1 − e ) + 12    ∞        cos(nπx/6)e −n 2 π 2 t/18
                                       6            n=1  36 + n π  2
                                                              2
                                             4B
                                        ∞                                   2  2    2

                             9. u(x,t) =           sin((2n − 1)πx/2L)exp(−(2n − 1) π kt/4L )
                                        n=1
                                           (2n − 1)π
                            11. Substitute e αx+βt v(x,t) into the partial differential equation, and solve for α and β,sothat v t = kv xx .Obtain
                                                    2
                                α =−A/2and β = k(B − A /4).
                                                                                 3x
                            13. Let u(x,t) = e −3x−9t v(x,t).Then v(0,t) = v(4,t) = 0and v(x,0) = e ,so
                                                                2nπ
                                                          ∞

                                                                               n
                                                                          12
                                                   v(x,t) =           (1 − e (−1) ) sin(nπx/4)e −n 2 π 2 t/16 .
                                                              144 + n π  2
                                                                   2
                                                          n=1
                                                                                                         2
                            15. Let u(x,t) = v(x,t) + f (x) and choose f (x) = 3x + 2. We obtain v(0,t) = v(1,t) = 0and u(x,0) = x − f (x).The
                                solution for v is
                                                        ∞
                                                            4
                                                                         2
                                                                   n
                                                                                     2
                                                                           2
                                                                                   2
                                                v(x,t) = 2     (−1) (1 + 2n π ) − (1 + n π ) sin(nπx)e −16n 2 π 2 t .
                                                            3
                                                           n π  3
                                                        n=1
                            17. Let u(x,t) = e −At W(x,t).Then w(0,t) = w(9,t) = 0and u(x,0) = 3x.Wefind that
                                                                 ∞       n+1
                                                                   54(−1)

                                                         w(x,t) =          sin(nπx/9)e −4n 2 π 2 t/81 .
                                                                      nπ
                                                                n=1

                                             1 1 − (−1) n
                                         ∞                    2   −4n 2 t

                            19. u(x,t) =  n=1           −1 + 4n t + e  sin(nx)
                                            8π    n 5
                                                1 − (−1)
                                                      n
                                            ∞                  −4n 2 t
                                        4
                                       +    n=1         sin(nx)e
                                        π         n  3
                                            50 1 − cos(5)(−1) n

                                         ∞                         2  2    −n 2 π 2 t/25
                            21. u(x,t) =                     −25 + n π t + 25e   sin(nπx/5)
                                         n=1  3  3  2  2
                                           n π   n π − 25
                                                 (−1)  − 1
                                                    n+1
                                          ∞                         −n 2 π 2 t/25

                                       +      500          sin(nπx/5)e
                                          n=1       3  3
                                                   n π
                                                      2  2   −16n 2 π 2 t/9
                                                 n
                            23.          ∞ 27(−1)  16n π t + 9e    − 9
                                u(x,t) =  n=1                           sin(nπx/3)
                                                            5
                                             128           n π  5
                                            ∞ 1 − (−1) n

                                       +2K             sin(nπx/3)e −16n 2 π 2 t/9
                                            n=1   nπ
                            Section 17.3 Solutions in an Infinite Medium
                             1. By separation of variables,
                                                                  1     ∞  8
                                                           u(x,t) =          cos(ωx)e  −ω 2 kt  dω
                                                                  π  0  16 + ω 2
                                By Fourier transform,
                                                                     1     ∞  −4|ξ| −(x−ξ) 2 /4kt
                                                           u(x,t) = √      e   e       dξ
                                                                  2 πkt  −∞
                             3.
                                                                 ∞

                                                        u(x,t) =  (a ω cos(ωx) + b ω sin(ωx))e −ω 2 kt  dω,
                                                                0
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-855        27410_25_Ans_p801-866
   870   871   872   873   874   875   876   877   878   879   880