Page 871 - Advanced_Engineering_Mathematics o'neil
P. 871

Answers to Selected Problems  851


                                and
                                                             2
                                                            ∂ y  1
                                                                    2
                                                                               2


                                                               = (c f (x + ct) + c f (x − ct))
                                                            ∂t  2  2
                             5. The wave equation is
                                                                                2
                                                                           2
                                                                   2
                                                                  ∂ z      ∂ z  ∂ z
                                                                     = c  2  +
                                                                  ∂t  2  ∂x  2  ∂y 2
                                for 0 < x < a,0 < y < b; boundary conditions are
                                                         z(0, y,t) = z(a, y,t) = z(x,0,t) = z(x,b,t) = 0
                                for t ≥ 0; initial conditions are
                                                                          ∂z
                                                           z(x, y,0) = f (x, y),  (x, y,0) = g(x, y).
                                                                          ∂t
                            Section 16.2 Wave Motion on an Interval

                                            16sin(nπ/2) − 8nπcos(nπ/2)    nπx     nπct
                                        ∞

                             1. y(x,t) =  n=1                       sin     sin
                                                      3
                                                     n π c               2        2
                                                        3
                                              108
                                        ∞

                             3. y(x,t) =  n=1       sin((2n − 1)πx/3)sin(2(2n − 1)πt/3)
                                                 4
                                           (2n − 1) π  4
                                        ∞ 24(−1) n+1                     √

                             5. y(x,t) =  n=1      sin((2n − 1)x/2)cos((2n − 1) 2t)
                                                 2
                                           (2n − 1) π
                                              −32
                                        ∞

                             7. y(x,t) =            sin((2n − 1)πx/2)cos(3(2n − 1)πt/2)
                                        n=1      3  3
                                           (2n − 1) π
                                              4
                                          ∞

                                      +   n=1    cos(nπ/4) − cos(nπ/2) sin(nπx/2)sin(3nπt/2)
                                            n π  2
                                             2
                                                                                         3
                             9. Let Y(x,t) = y(x,t) + h(x) and substitute into the problem to choose h(x) = (x − 4x)/9. The problem for Y is
                                                                2
                                                                      2
                                                               ∂ Y   ∂ Y
                                                                  = 3
                                                               ∂t  2  ∂x  2
                                                             Y(0,t) = Y(2,t) = 0,
                                                                    1        ∂Y
                                                                       3
                                                             Y(x,0) = (x − 4x),  (x,0) = 0,
                                                                    9         ∂t
                                with solution
                                                               ∞       n
                                                                  32(−1)              √

                                                        Y(x,t) =        sin(nπx/2)cos(nπ 3t/2).
                                                                    3
                                                                   3n π  3
                                                               n=1
                            11. Let Y(x,t) = y(x,t) + h(x) and find that h(x) = cos(x) − 1. The problem for Y is
                                                                2
                                                                     2
                                                               ∂ Y   ∂ Y
                                                                   =
                                                               ∂t 2  ∂x  2
                                                             Y(0,t) = Y(2π,t) = 0,
                                                                             ∂Y
                                                             Y(x,0) = cos(x) − 1,  (x,0) = 0,
                                                                             ∂t
                                with solution
                                                         ∞
                                                      16           1
                                              Y(x,t) =                      sin((2n − 1)x/2)cos((2n − 1)t/2).
                                                                        2
                                                      π    (2n − 1)[(2n − 1) − 4]
                                                        n=1

                                                            1
                            13. u(x,t) = e −At/2    ∞  C n sin(nπx/L)     AL n cos(r n t/2L) + sin(r n t/2L) ,
                                                             r
                                             n=1
                                where
                                                                   2     L
                                                              C n =    f (ξ)sin(nπξ/L)dξ
                                                                  L  0
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-851        27410_25_Ans_p801-866
   866   867   868   869   870   871   872   873   874   875   876