Page 867 - Advanced_Engineering_Mathematics o'neil
P. 867
Answers to Selected Problems 847
Section 14.7 DFT Approximation of the Fourier Transform
1.
4 − 4iω 1
ˆ f (ω) = , ˆ f (4) = (1 − i),
2
ω + 16 8
511
3π 3π j
DFT approximation = f e −3πij/64 = 0.143860 − 0.124549i
256 256
j=0
3.
4 − ω 2 4ωi
ˆ f (ω) = − , ˆ f (12) ≈−0.006392 − 0.002191i,
2
(ω + 4) 2 (ω + 4) 2
2
511
3π 3π j
DFT approximation = f e −9πij/64 =−0.006506 − 0.002191i
256 256
j=0
CHAPTER FIFTEEN SPECIAL FUNCTIONS AND EIGENFUNCTION EXPANSIONS
Section 15.1 Eigenfunction Expansions
2
1. The problem is regular on [0, L] with eigenvalues ((2n − 1)π/2L) for n = 1,2,···. The functions
sin((2n − 1)πx/2L) are eigenfunctions.
2
3. Regular on [0,4], ((2n − 1)π/8) ,cos((2n − 1)πx/8)
2
5. Periodic on [−3π,3π], n /9for n = 0,1,2,···, a n cos(nx/3) + b n sin(nx/3) with not both a n and b n equal to 0
√ √
1
7. Regular on [0,1], eigenvalues are positive solutions of tan( λ) = λ.If λ is an eigenvalue, an eigenfunction is
√ √ √ 2
2 λcos( λx) + sin( λx).
2
9. Regular on [0,π],1 + n and e −x sin(nx) for n = 1,2,···
11. For 0 < x < 1,
∞
2
n
1 − x = (1 + (−1) (L − 1))sin(nπx).
nπ
n=1
13. The expansion is
√ √
∞ n
4 2sin(nπ/2) − (−1) 2n − 1
2cos(nπ/2) −
cos πx .
π 2n − 1 8
n=1
This converges to −1for0 < x < 2, to 1 for 2 < x < 4,andto0at x = 0.
15. For −3π< x < 3π,
∞ n
(−1)
2
2
x = 3π + 36 cos(nx/3).
n 2
n=1
17. Compute both sides of Bessel’s inequality. With some rearrangement, obtain
∞ n 2
4(−1) + (2n − 1)π 512 2 1
≤ =
(2n − 1) π 3 15 256 2 960
3
n=1
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-847 27410_25_Ans_p801-866

