Page 867 - Advanced_Engineering_Mathematics o'neil
P. 867

Answers to Selected Problems  847


                            Section 14.7 DFT Approximation of the Fourier Transform
                             1.

                                                     4 − 4iω      1
                                                ˆ f (ω) =  , ˆ f (4) = (1 − i),
                                                      2
                                                     ω + 16       8
                                                                   511
                                                                3π       3π j
                                               DFT approximation =    f      e −3πij/64  = 0.143860 − 0.124549i
                                                                256      256
                                                                   j=0
                             3.

                                                              4 − ω 2    4ωi
                                                        ˆ f (ω) =    −        , ˆ f (12) ≈−0.006392 − 0.002191i,
                                                               2
                                                             (ω + 4) 2  (ω + 4) 2
                                                                         2
                                                                 511
                                                              3π      3π j
                                             DFT approximation =    f      e −9πij/64  =−0.006506 − 0.002191i
                                                             256       256
                                                                 j=0
                            CHAPTER FIFTEEN SPECIAL FUNCTIONS AND EIGENFUNCTION EXPANSIONS
                            Section 15.1 Eigenfunction Expansions
                                                                               2
                             1. The problem is regular on [0, L] with eigenvalues ((2n − 1)π/2L) for n = 1,2,···. The functions
                                sin((2n − 1)πx/2L) are eigenfunctions.
                                                       2
                             3. Regular on [0,4], ((2n − 1)π/8) ,cos((2n − 1)πx/8)
                                                  2
                             5. Periodic on [−3π,3π], n /9for n = 0,1,2,···, a n cos(nx/3) + b n sin(nx/3) with not both a n and b n equal to 0
                                                                          √     √
                                                                               1
                             7. Regular on [0,1], eigenvalues are positive solutions of tan( λ) =  λ.If λ is an eigenvalue, an eigenfunction is
                                √     √        √                               2
                                2 λcos( λx) + sin( λx).
                                                 2
                             9. Regular on [0,π],1 + n and e −x  sin(nx) for n = 1,2,···
                            11. For 0 < x < 1,
                                                                ∞
                                                                   2
                                                                            n
                                                          1 − x =    (1 + (−1) (L − 1))sin(nπx).
                                                                  nπ
                                                                n=1
                            13. The expansion is
                                                       √           √
                                                   ∞                               n
                                                      4              2sin(nπ/2) − (−1)  2n − 1
                                                         2cos(nπ/2) −
                                                                                    cos      πx .
                                                     π             2n − 1                 8
                                                   n=1
                                This converges to −1for0 < x < 2, to 1 for 2 < x < 4,andto0at x = 0.
                            15. For −3π< x < 3π,
                                                                        ∞     n
                                                                          (−1)
                                                              2
                                                                   2
                                                             x = 3π + 36       cos(nx/3).
                                                                            n 2
                                                                        n=1
                            17. Compute both sides of Bessel’s inequality. With some rearrangement, obtain
                                                         ∞       n            2
                                                             4(−1) + (2n − 1)π  512 2    1

                                                                              ≤        =
                                                                (2n − 1) π  3   15 256 2  960
                                                                      3
                                                         n=1
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

                                   October 14, 2010  17:50  THM/NEIL    Page-847        27410_25_Ans_p801-866
   862   863   864   865   866   867   868   869   870   871   872