Page 872 - Advanced_Engineering_Mathematics o'neil
P. 872
852 Answers to Selected Problems
and
2 2
2
2
2
2
r n = 4(BL + n π c ) − A L .
15. (a) With the forcing term, the solution is
∞
y f (x,t) = d n sin(nπx/4)cos(3nπt/4)
n=1
1
+ (cos(πx) − 1),
9π 2
where
#
−32(1−(−1) n )(288−17n 2 ) for n
= 4,
d n = 9n 3 π 3 (n 2 −16)
0 for n = 4.
(b) Without the forcing term, the solution is
∞
128
y(x,t) = sin((2n − 1)πx/3)cos(3(2n − 1)πt/4).
3
π (2n − 1) 3
n=1
Section 16.3 Wave Motion in an Infinite Medium
10
∞
1. y(x,t) = cos(ωx)cos(12ωt)dω
0 π(25 + ω )
2
1 sin(πω)
∞
3. y(x,t) = sin(ωx)sin(4ωt)dω
0 2πω 1 − ω 2
e 2cos(ω) − ω sin(ω)
−2
∞
5. y(x,t) = cos(ωx)
0 3πω 4 + ω 2
−2
e ω cos(ω) + 2sin(ω)
+ sin(ωx) sin(3ωt)dω
3πω 4 + ω 2
Section 16.4 Wave Motion in a Semi-Infinite Medium
∞ 2 2 − ω sin(ω) − 2cos(ω)
1. y(x,t) = sin(ωx)cos(3ωt)dω
0 π ω 3
∞ 1 sin(πω/2) − sin(5πω/2)
3. y(x,t) = sin(ωx)sin(2ωt)dω
0 πω ω − 1
2
5.
∞ 3
y(x,t) = d ω sin(ωx)sin(14ωt)dω,
0 7πω 5
where
2
d ω = 2sin(3ω) − 4ω cos(3ω) − 3ω sin(3ω) − 2ω
Section 16.5 Laplace Transform Techniques
x K x x 1
2
1. y(x,t) = f t − − t − H t − + Kt 2
c 2 c c 2
A x 3 x A
3. y(x,t) = t − H t − − t 3
6 c c 6
x x 1
5. y(x,t) = f t − H t − − Axt 4
c c 6
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-852 27410_25_Ans_p801-866

