Page 873 - Advanced_Engineering_Mathematics o'neil
P. 873

Answers to Selected Problems  853


                            Section 16.6 Characteristics and d’Alembert’s Solution
                                       1                 1    x+t
                                                                        2
                                             2
                                                     2
                                                                     2
                             1. y(x,t) = [(x − t) + (x + t) ]+  −ξ dξ = x + t − xt
                                       2                 2  x−t
                                       1                                  49   1                       49
                                                                             3
                                                                                                   2
                                                                      2
                             3. y(x,t) = [cos(π(x − 7t)) + cos(π(x + 7t))]+ t − x t −  t =  cos(πx)cos(7πt) + t − x t −  t 3
                                       2                                  3    2                       3
                                       1
                                                         x
                             5. y(x,t) = [e x−14t  + e  x+14t ]+ xt = e cosh(14t) + xt
                                       2
                                          1              1    1
                                                            2
                             7. y(x,t) = x + (e  −x+4t  − e  −x−4t ) + xt + t 3
                                          8              2    6
                                       1                           1
                                                                      4
                                                                          2
                                                                               2
                             9. y(x,t) =  (sin(2(x + 8t)) − sin(2(x − 8t))) +  xt + x + 64t − x
                                       32                          12
                                       1                           9
                            11. y(x,t) = [cosh(x − 3t) + cosh(x + 3t)]+ t +  xt  5
                                       2                          10
                                1
                            13.  (sin(2(x − ct)) + sin(2(x + ct)))
                                2
                                1
                            15.  (cos(x − ct) + cos(x + ct))
                                2
                            Section 16.7 Vibrations in a Circular Membrane
                             1. We find that (approximately),
                                                              1
                                                          2  xJ 0 (2.405x)dx  0.1057
                                                      a 1 =  0           ≈ 2     = 0.78442,
                                                            [J 1 (2.405)] 2  0.2695
                                                      a 2 ≈ 0.06869,a 3 ≈ 0.05311,a 4 ≈ 0.01736,a 5 ≈ 0.01698
                                The fifth partial sum gives the approximation
                                               z(r,t) ≈ 0.78442J 0 (2.405r)cos(2.405t) + 0.05311J 0 (5.520r)cos(5.520t)
                                                + 0.06869J 0 (8.654r)cos(8.654t) + 0.01736J 0 (11.792r)cos(11.792t)
                                                + 0.01698J 0 (14.931r)cos(14.931t).
                             3. We find the approximation
                                                z(r,t) ≈ 1.2534J 0 (2.405r)cos(2.405t) − 0.80469J 0 (5.520r)cos(5.520t)
                                                − 0.11615J 0 (8.654r)cos(8.654t) − 0.09814J 0 (11.792r)cos(11.792t)
                                                − 0.03740J 0 (14.931r)cos(14.931t)

                            Section 16.8 Vibrations in a Circular Membrane II
                             1. The solution is
                                                                ∞
                                                                       j 0k

                                                       z(r,θ,t) =  α k J 0  r cos( j 0k t)
                                                                        2
                                                                k=1
                                                                       ∞
                                                                               j 2k
                                                               + cos(2θ)  β k J 2  r cos( j 2k t)
                                                                               2
                                                                       k=1
                                                                  ∞       ∞

                                                                                  j pq
                                                               +    sin(pθ)  δ pq J p  r sin( j pq t)
                                                                                   2
                                                                 p=1      q=1
                                where
                                                                         1
                                                                  2
                                                                              2
                                                          α k =          ξ(1 − ξ )J 0 ( j 0k ξ)dξ ,
                                                               [J 1 ( j 0k )] 2  0
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-853        27410_25_Ans_p801-866
   868   869   870   871   872   873   874   875   876   877   878