Page 868 - Advanced_Engineering_Mathematics o'neil
P. 868

848    Answers to Selected Problems

                     Section 15.2 Legendre Polynomials
                      1. With n = 5 in the recurrence relation,
                                                          1
                                                    P 6 (x) = (11xP 5 (x) − 5P 4 (x))
                                                          6
                                                           1
                                                                       4
                                                                             2
                                                                 6
                                                        =   (231x − 315x + 105x − 5)
                                                          16
                        Similarly,
                                                      1
                                                            7
                                                                  5
                                                                        3
                                               P 7 (x) =  (429x − 693x + 315x − 35x),
                                                     16
                                                     6435  8  3003  6  3465  4  315  2  35
                                               P 8 (x) =  x −    x +     x −    x +
                                                      128     32      64     32    128
                      3. For n = 2, this gives
                                                    1   d  2        1
                                                            2
                                                                        2
                                                                 2
                                                          ((x − 1) ) = (3x − 1) = P 2 (x).
                                                   4(2!) dx  2      2
                      5. Use the binomial series to write
                                                      ∞
                                             1          (−1/2)(−3/2)···(−1/2 − n + 1)  2  n
                                        √          =                             (t − 2at)
                                          1 − 2at + t 2            n!
                                                     n=0
                                                      ∞           k                j−k  j−k  j−k
                                                              (−1) 1 · 3···(2 j − 1) j!(−1)  2  a

                                                                                            n
                                                   =                                       t .
                                                                         j
                                                                       2 j!k!( j − k)!
                                                     n=0 j+k=n,k≤ j
                                             n
                        Show that the coefficient of t is P n (a).For r < d,let a = cos(θ) and t =r/d.For r > d,use a = cos(θ) and t = d/r.
                      8. (a)
                                                              2              2
                                                           2
                                                   1 + 2x − x =  P 0 (x) + 2P 1 (x) −  P 2 (x)
                                                              3              3
                        (c)
                                                             37      34       32
                                                     2    4
                                                  2 − x + 4x =  P 0 (x) +  P 2 (x) +  P 4 (x)
                                                             15      21       35
                      9. For −1 < x < 1,
                                                                    2
                                                         12         π − 10
                                               sin(πx/2) =  x + 168       P 3 (x)
                                                         π  2       π 4
                                                                  2   4
                                                             −112π + π + 1008
                                                       + 660                  P 5 (x) +···
                                                                    π  6
                     11. For −1 < x < 1,
                                                    1            1
                                             2
                                           sin (x) =−  cos(1)sin(1) +
                                                    2            2

                                                      5        15  15
                                                                       2
                                                  + − cos(1) +   −   cos (1) P 2 (x)
                                                      8        8   4

                                                     531            585  585
                                                                              2
                                                  +     cos(1)sin(1) −  +   cos (1) P 4 (x) +···
                                                     32             32   16
                     13. For −1 < x < 0and 0 < x < 1,
                                                         3       7      11
                                                    f (x) =  P 1 (x) −  P 3 (x) +  P 5 (x) +···
                                                         2       8      16
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-848        27410_25_Ans_p801-866
   863   864   865   866   867   868   869   870   871   872   873