Page 868 - Advanced_Engineering_Mathematics o'neil
P. 868
848 Answers to Selected Problems
Section 15.2 Legendre Polynomials
1. With n = 5 in the recurrence relation,
1
P 6 (x) = (11xP 5 (x) − 5P 4 (x))
6
1
4
2
6
= (231x − 315x + 105x − 5)
16
Similarly,
1
7
5
3
P 7 (x) = (429x − 693x + 315x − 35x),
16
6435 8 3003 6 3465 4 315 2 35
P 8 (x) = x − x + x − x +
128 32 64 32 128
3. For n = 2, this gives
1 d 2 1
2
2
2
((x − 1) ) = (3x − 1) = P 2 (x).
4(2!) dx 2 2
5. Use the binomial series to write
∞
1 (−1/2)(−3/2)···(−1/2 − n + 1) 2 n
√ = (t − 2at)
1 − 2at + t 2 n!
n=0
∞ k j−k j−k j−k
(−1) 1 · 3···(2 j − 1) j!(−1) 2 a
n
= t .
j
2 j!k!( j − k)!
n=0 j+k=n,k≤ j
n
Show that the coefficient of t is P n (a).For r < d,let a = cos(θ) and t =r/d.For r > d,use a = cos(θ) and t = d/r.
8. (a)
2 2
2
1 + 2x − x = P 0 (x) + 2P 1 (x) − P 2 (x)
3 3
(c)
37 34 32
2 4
2 − x + 4x = P 0 (x) + P 2 (x) + P 4 (x)
15 21 35
9. For −1 < x < 1,
2
12 π − 10
sin(πx/2) = x + 168 P 3 (x)
π 2 π 4
2 4
−112π + π + 1008
+ 660 P 5 (x) +···
π 6
11. For −1 < x < 1,
1 1
2
sin (x) =− cos(1)sin(1) +
2 2
5 15 15
2
+ − cos(1) + − cos (1) P 2 (x)
8 8 4
531 585 585
2
+ cos(1)sin(1) − + cos (1) P 4 (x) +···
32 32 16
13. For −1 < x < 0and 0 < x < 1,
3 7 11
f (x) = P 1 (x) − P 3 (x) + P 5 (x) +···
2 8 16
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-848 27410_25_Ans_p801-866

