Page 864 - Advanced_Engineering_Mathematics o'neil
P. 864
844 Answers to Selected Problems
For ω
=±1,
ω 1 cos(K(1 + ω)) cos(K(1 − ω))
ˆ f S (ω) = − − ,
ω − 1 2 1 + ω 1 − ω
2
1
ˆ f S (1) = (1 − cos(2K)) =− ˆ f S (−1)
4
1
1
5. ˆ f C (ω) = 1 + ;
2 1+(1+ω 2 ) 1 + (1 − ω )
2
1
1 + ω 1 − ω
ˆ f S (ω) = −
2
2
2 1 + (1 + ω ) 1 + (1 − ω )
Section 14.5 The Discrete Fourier Transform
1. Approximate values are given in Table A.7.
3. Approximate values are given in Table A.8.
5. Approximate values are given in Table A.9.
1 5 k 2πijk/6
7. u j = (1 + i) e
6 k=0
u 0 =−1.33333 + 0.166667i,u 1 =−0.427030 + 0.549038i
u 2 =−0.016346 + 0.561004i,u 3 = 0.33333 + 0.500000i
u 4 = 0.849679 + 0.272329i,u 5 = 1.593696 − 2.049038i
TABLE A.7 Approximate Discrete Fourier Transform Values in Problem 1,
Section 14.5
k D[u](k)
–4 0.13292 – 0.01658i
−9
–3 0.09624 + 0.72830(10 )i
–2 0.13292 + 0.01658i
–1 2.93687 + 0.42794i
0 0.1.82396
1 2.93687 – 0.42794i
2 0.13292 – 0.01658i
−9
3 0.09624 – 0.72830(10 )i
4 0.13292 + 0.01658i
TABLE A.8 Approximate Discrete Fourier Transform Values in Problem 3,
Section 14.5
k D[u](k)
–4 0.65000 – 0.17321i
−9
–3 0.61667 – 0.25346(10 )i
–2 0.65000 + 0.17321i
–1 0.81667 + 0.40415i
0 2.45000
1 0.81667 – 0.40415i
2 0.65000 – 0.17321i
−9
3 0.61667 + 0.25346(10 )i
4 0.65000 + 0.17321i
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-844 27410_25_Ans_p801-866

