Page 861 - Advanced_Engineering_Mathematics o'neil
P. 861

Answers to Selected Problems  841


                               The Nth Cesàro sum is
                                                              N
                                                           4        2n − 1     1    (2n − 1)πt
                                                     σ N (t) =   1 −            sin           .
                                                           π          N    2n − 1      2
                                                             n=1
                            3. The complex Fourier series is
                                                              ∞
                                                                 i             nπ

                                                                        n
                                                                    (−1) − cos     e inπt .
                                                                nπ             2
                                                            n=−∞
                               The Nth partial sum is
                                                               ∞
                                                                  2

                                                                                  n
                                                         S N (t) =  (cos(nπ/2) − (−1) )sin(nπt)
                                                                  nπ
                                                               n=1
                               The Nth Cesàro sum is
                                                                  n     2  	    nπ
                                                            N

                                                                                      n
                                                     σ N (t) =  1 −      cos    − (−1) sin(nπt).
                                                                  N  nπ      2
                                                           n=1
                            5. The complex Fourier series is
                                                         ∞
                                                   17           1              i
                                                                                      n
                                                                          n
                                                     +             (1 − (−1) ) +  (6(−1) − 5) e inπt/2 .
                                                   4          2n π  2         2nπ
                                                                2
                                                       n=−∞,n
=0
                               The Nth Cesàro sum is
                                                                N
                                                           17       1      |n|
                                                                                      n
                                                     σ N (t) =  +       1 −   (1 − (−1) )cos(nπt)
                                                                   2
                                                            4     n π  2   N
                                                                n=1
                                                              N
                                                                 i     |n|         n
                                                           +        1 −    (5 − 6(−1) )sin(nπt).
                                                                nπ     N
                                                             n=1
                            7. The Nth partial sums are
                            CHAPTER FOURTEEN THE FOURIER INTEGRAL AND FOURIER TRANSFORMS
                            Section 14.1 The Fourier Integral
                             1. The Fourier integral is
                                                            ∞  2sin(πω)  2cos(πω)

                                                                      −          sin(ωx)dω,
                                                                 πω 2      ω
                                                           0
                                converging to −π/2if x =−π,to x for −π< x <π,to π/2for x = π andto0if |x| >π.
                             3.
                                                                 2
                                                              ∞

                                                                   (1 − cos(πω)) sin(ωx)dω,
                                                                 πω
                                                             0
                                converging to −1/2at x =−π,to −1for −π< x < 0, to 0 if x = 0,to1if0 < x <π,to1/2if x = π and to 0 if
                                |x| >π.
                             5.
                                                   ∞  1

                                                                             2
                                                        [400ω cos(100ω) + (20000ω − 4)sin(100ω)]cos(ωx)dω,
                                                     πω 3
                                                  0
                                           2
                                converging to x if −100 < x < 100, to 5000 if x =±100, and to 0 if |x| > 100.
                             7.
                                                                                       2
                                                              2
                                              4     ∞  
 cos(πω)(cos (πω) − 1)  sin(πω)cos (πω)
                                                                      cos(ωx) +             sin(ωx) dω,
                                                            2
                                              π  0         ω − 1                   1 − ω 2
                                converging to sin(x) if −3π< x <π andto0if x < −3π or x ≥ π.
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-841        27410_25_Ans_p801-866
   856   857   858   859   860   861   862   863   864   865   866