Page 861 - Advanced_Engineering_Mathematics o'neil
P. 861
Answers to Selected Problems 841
The Nth Cesàro sum is
N
4 2n − 1 1 (2n − 1)πt
σ N (t) = 1 − sin .
π N 2n − 1 2
n=1
3. The complex Fourier series is
∞
i nπ
n
(−1) − cos e inπt .
nπ 2
n=−∞
The Nth partial sum is
∞
2
n
S N (t) = (cos(nπ/2) − (−1) )sin(nπt)
nπ
n=1
The Nth Cesàro sum is
n 2 nπ
N
n
σ N (t) = 1 − cos − (−1) sin(nπt).
N nπ 2
n=1
5. The complex Fourier series is
∞
17 1 i
n
n
+ (1 − (−1) ) + (6(−1) − 5) e inπt/2 .
4 2n π 2 2nπ
2
n=−∞,n
=0
The Nth Cesàro sum is
N
17 1 |n|
n
σ N (t) = + 1 − (1 − (−1) )cos(nπt)
2
4 n π 2 N
n=1
N
i |n| n
+ 1 − (5 − 6(−1) )sin(nπt).
nπ N
n=1
7. The Nth partial sums are
CHAPTER FOURTEEN THE FOURIER INTEGRAL AND FOURIER TRANSFORMS
Section 14.1 The Fourier Integral
1. The Fourier integral is
∞ 2sin(πω) 2cos(πω)
− sin(ωx)dω,
πω 2 ω
0
converging to −π/2if x =−π,to x for −π< x <π,to π/2for x = π andto0if |x| >π.
3.
2
∞
(1 − cos(πω)) sin(ωx)dω,
πω
0
converging to −1/2at x =−π,to −1for −π< x < 0, to 0 if x = 0,to1if0 < x <π,to1/2if x = π and to 0 if
|x| >π.
5.
∞ 1
2
[400ω cos(100ω) + (20000ω − 4)sin(100ω)]cos(ωx)dω,
πω 3
0
2
converging to x if −100 < x < 100, to 5000 if x =±100, and to 0 if |x| > 100.
7.
2
2
4 ∞
cos(πω)(cos (πω) − 1) sin(πω)cos (πω)
cos(ωx) + sin(ωx) dω,
2
π 0 ω − 1 1 − ω 2
converging to sin(x) if −3π< x <π andto0if x < −3π or x ≥ π.
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-841 27410_25_Ans_p801-866

