Page 856 - Advanced_Engineering_Mathematics o'neil
P. 856

836    Answers to Selected Problems

                     Section 12.4 Potential Theory
                                            3
                      1. Conservative, ϕ(x, y) = xy − 4y
                                                   3
                                            2
                      3. Conservative, ϕ(x, y) = 8x + 2y − y /3
                                             2
                                                 2
                      5. Conservative, ϕ(x, y) = ln(x + y )
                      7. ϕ(x, y, z) = x − 2y + z
                      9. Not conservative
                     11. −27
                     13. 5 + ln(3/2)
                     15. −5
                     17. −403
                     19. 2e −2
                     21. Write
                                                              m


                                              E(t) = total energy =  R (t) · R (t) − ϕ(x(t), y(t), z(t)).
                                                               2


                        Use the fact that mR =∇ϕ (by one of Newton’s laws of motion) to show that E (t) = 0.
                     Section 12.5 Surface Integrals
                          √                            √
                     1. 125 2   3. π(29 3/2  − 27)/6  5. 28π 2/3
                                  √      √             √
                     7. (9/8) ln 4 +  17 + 4 17  9. −10 3
                     Section 12.6 Applications of Surface Integrals
                                                       √
                     1. 49/12,(12/35,33/35,24/35)  3. 9π K 2,(0,0,2)
                     5. 78π,(0,0,27/13)  7. 128/3

                     Section 12.7 Lifting Green’s Theorem to R 3
                     1. Apply Green’s theorem to the line integral

                                                              ∂ψ      ∂ψ
                                                           −ϕ    dx + ϕ  dy.
                                                              ∂y      ∂x
                                                          C
                     3. Apply Green’s theorem to
                                                              ∂ϕ     ∂ϕ

                                                             −   dx +   dy.
                                                              ∂y     ∂x
                                                           C
                     Section 12.8 The Divergence Theorem of Gauss
                     1. 256π/3   3. 0   5. 8π/3
                     7. 2π   9. 0 because ∇· (∇× F) = 0

                     Section 12.9 Stokes’s Theorem
                     1. −8π    3. −16π   5. −32/3   7. −108

                     Section 12.10 Curvilinear Coordinates
                     2.

                                                                              2
                                                                         2
                                                           2
                                                                2
                                              h 1 = h 2 = a sinh (u)cos (v) + cosh (u)sin (v),h 3 = 1
                                                             1 ∂ f    1 ∂ f   ∂ f
                                                  ∇ f (u,v, z) =  u u +   u v +  u z ,
                                                             h 1 ∂u  h 1 ∂v   ∂z
                       where
                                                       a
                                                   u u =  (sinh(u)cos(v)i + cosh(u)sin(v)j),
                                                       h 1

                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

                                   October 14, 2010  17:50  THM/NEIL    Page-836        27410_25_Ans_p801-866
   851   852   853   854   855   856   857   858   859   860   861