Page 854 - Advanced_Engineering_Mathematics o'neil
P. 854

834    Answers to Selected Problems

                     CHAPTER ELEVEN VECTOR DIFFERENTIAL CALCULUS
                     Section 11.1 Vector Functions of One Variable

                      1. ( f (t)F(t)) =−12sin(3t)i + 12t[2cos(3t) − 3t sin(3t)]j

                                   +8[cos(3t) − 3t sin(3t)]k
                      3. (F × G) = (1 − 4sin(t))i − 2tj − (cos(t) − t sin(t))k

                                        3
                                              2
                                                           3
                      5. ( f (t)F(t)) = (1 − 8t )i + (6t cosh(t) − (1 − 2t )sinh(t))j

                                        2 t
                                                  3
                                             t
                                   +(−6t e + e (1 − 2t ))k
                          t
                      7. te (2 + t)(j − k)
                      9. (a) F(t) = sin(t)i + cos(t)j + 45tk for 0 ≤ t ≤ 2π,

                           F (t)= cos(t)i − sin(t)j + 45k
                                √
                        (b) s(t) =  2026t
                                     1  	      √             √           √
                        (c) F(t(s)) = √  sin s/ 2026 i + cos s/ 2026 + 45s/ 2026 k
                                    2026
                                 2

                     11. (a) F(t) = t (2i + 3j + 4k) for 1 ≤ t ≤ 3, F (t) = 2t(2i + 3j + 4k)
                                √
                                     2
                        (b) s(t) =  29(t − 1)
                                        s

                        (c) F(t(s)) = 1 + √  (2i + 3j + 4k)
                                        29
                     Section 11.2 Velocity and Curvature
                                         √
                                               2
                      1. v(t) = 3i + 2tk,v(t) =  9 + 4t ,a(t) = 2k,
                                4t           6            6        6
                          a T = √    ,κ =        ,a N =
                                                           2 1/2
                                                                    2 1/2
                                              2 3/2
                               9 + 4t 2  (9 + 4t )    (9 + 4t )  (9 + 4t )
                      3. v(t) = 2i − 2j + k,v(t) = 3,a(t) = O
                          κ = 0,a T = a N = 0
                                                 √
                                                    −t
                                                             −t
                                 −t
                      5. v(t) =−3e (i + j − 2k),v(t) = 3 6e ,a(t) = 3e (i + j − 2k)
                                     √
                                        −t
                          κ = 0,a T =−3 6e ,a N = 0
                                                    √
                      7. v(t) = 2cosh(t)j − 2sinh(t)k,v(t) = 2 cosh(2t),
                        a(t) = 2sinh(t)j − 2cosh(t)k
                                  1
                          κ =           ,
                              2(cosh(2t)) 3/2
                                     √             √
                          a T = 2sinh(2t)/ cosh(2t),a N = 2/ cosh(2t)

                                                                                        2
                                                        2
                                                     2
                                                            2
                      9. v(t) = 2t(αi + βj + γ k), v(t) = 2|t| α + β + γ , a N = 0, κ = 0, a T = 2σ α + β + γ ,where σ equals 1 if t ≥ 0,
                                                                                     2
                                                                                 2
                        and −1if t < 0
                     Section 11.3 Vector Fields and Streamlines
                      1. x = x, y = 1/(x + c), z = e x+k ; x = x, y = 1/(x − 1), z = e x−2
                                 x          2
                      3. x = x, y = e (x − 1) + c, x =−2z + k;
                                              1
                                                     2
                                          2
                                 x
                         x = x, y = e (x − 1) − e , z = (12 − x )
                                              2
                                    z
                      5. x = c, y = y,2e = k − sin(y);
                                          √
                         x = 3, y = y, z = ln 1 +  2/4 − (1/2)sin(y)
                      7. There are many such vector fields. One whose streamlines are circles about the origin in the plane z = 0isgiven by
                                                                     1   1
                                                          F(x, y, z) =− i + j.
                                                                     x   y
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-834        27410_25_Ans_p801-866
   849   850   851   852   853   854   855   856   857   858   859