Page 849 - Advanced_Engineering_Mathematics o'neil
P. 849

Answers to Selected Problems  829


                                                    t
                            29. If A is hermitian then A = A ,so

                                                                               t
                                                                        t
                                                                     (AA ) = A(A )
                                                                    = A(A) = (A)A.

                                  t
                            31. If S =−S,theneach s jj =−s jj . Write s jj = a jj + ib jj .Then a jj =−a jj ,so a jj = 0and s jj is pure imaginary.
                            CHAPTER TEN SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS
                            Section 10.1 Linear Systems
                            The following solutions give the fundamental matrix  (t) and the solution of the initial value problem.
                                         2t  6t            2t   6t
                                      −e    3e          −3e + 3e
                             1.  (t) =  2t   6t  ; X(t) =  2t  6t
                                       e    e            3e + e
                                              √               √
                                            (1+2 3)t       (1−2 3)t
                                          4e             4e
                             3.  (t) =     √      √        √     √
                                      (−1 +  3)e (1+2 3)t  (−1 −  3)e (1−2 3)t
                                           √       √       √
                                                (1+2 3)t         (1−2 3)t
                                                                   √
                                      (1 + 5 3/3)e   + (1 − 5 3/3)e
                                                   √
                                                                   √
                                X(t) =     √     (1+2 3)t  √     (1−2 3)t
                                      (−1 +  3/6)e    + (1 +  3/6)e
                                     ⎛  t      −3t  ⎞     ⎛    t   −3t  ⎞
                                       e   0  e             10e − 9e
                                                              t
                             5.  (t) = ⎝ 0  e t  3e −3t ⎠ ; X(t) = ⎝ 24e − 27e  −3t ⎠
                                                               t
                                       e −t  e t  e  −3t    14e − 9e −3t
                            Section 10.2 Solution of X = AX for Constant A

                                        3t                          3t
                                      7e    0                    7c 1 e
                             1.  (t) =  3t  −4t ; X(t) =  (t)C =  3t  −4t
                                      5e   e                  5c 1 e + c 2 e

                                       1   e 2t        c 1 + c 2 e 2t
                             3.  (t) =     2t ; X(t) =       2t
                                      −1   e          −c 1 + c 2 e
                                     ⎛        3t    −4t  ⎞    ⎛         3t   −4t  ⎞
                                        1   2e    −e             c 1 + 2c 2 e − c 3 e
                                                                        3t
                             5.  (t) = ⎝ 6  3e 3t  2e −4t ⎠ ; X(t) = ⎝ 6c 1 + 3c 2 e + 2c 2 e  −4t ⎠
                                                                          3t
                                       −13  −2e 3t  e −4t       −13c 1 − 2c 2 e + c 3 e −4t
                                         4t   −3t           4t   −3t
                                       2e    e             6e − 5e
                             7.  (t) =   4t   −3t ; X(t) =   4t   −3t
                                      −3e   2e           −9e − 10e
                                     ⎛    2t   3t  ⎞    ⎛    2t  3t  ⎞
                                       0  e  3e            4e − 3e
                                               3t
                                                              2t
                                                                  3t
                             9.  (t) = ⎝ 1  e 2t  e ⎠ ; X(t) = ⎝ 2 + 4e − e ⎠
                                       1  0   e 3t          2 − e 3t
                                        2t         2t
                                      2e cos(2t)  2e sin(2t)
                            11.  (t) =  2t         2t
                                       e sin(2t)  −e cos(2t)

                                                            t
                                            t
                                          5e cos(t)       5e sin(t)
                            13.  (t) =  t              t
                                      e [2cos(t) + sin(t)]  e [2sin(t) − cos(t)]
                                     ⎛           −t                 −t         ⎞
                                       0        e cos(2t)          e sin(2t)
                                            −t
                                                               −t
                            15.  (t) = ⎝ 0  e [cos(2t) − 2sin(2t)]  e [sin(2t) + 2cos(2t)] ⎠
                                                                    −t
                                                 −t
                                       e −2t   3e cos(2t)         3e sin(2t)
                                        3t   3t
                                      e   2te
                            17.  (t) =      3t
                                       0   e
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-829        27410_25_Ans_p801-866
   844   845   846   847   848   849   850   851   852   853   854