Page 855 - Advanced_Engineering_Mathematics o'neil
P. 855
Answers to Selected Problems 835
Section 11.4 The Gradient Field
1. yzi + xzj + xyk,i + j + k,
√ √
3,− 3
z
z
6
6
3. (2y + e )i + 2xj + xe k,(2 + e )i − 4j − 2e k,
√ √
12
6
6
20 + 4e + 5e ,− 20 + 4e + 5e 12
5. 2y sinh(2xy)i + 2x sinh(2xy)j − cosh(z)k,cosh(1)k,cosh(1),−cosh(1)
√
2
7. 1/ 3 (8y − z + 16xy − x)
√
2
2 3
2
9. 1/ 5 (2x z + 3x yz )
√ √
11. x + y + 2z = 4; x = y = 1 + 2t, z = 2(1 + 2t)
13. x = y; x = 1 + 2t, y = 1 − 2t, z = 0
15. x = 1; x = 1 + 2t, y = π, z = 1
17. Level surfaces are planes x + z = k.
Section 11.5 Divergence and Curl
In Problems 1, 3, and 5, ∇· F is given first, then ∇× F.
y
y
1. 4,O 3. 2y + xe + 2,(e − 2x)k
5. cosh(x) fxz sinh(xyz) − 1,(−1 − xy sinh(xyz))i − j + yz sinh(xyz)k(i, j,k)
In Problems 7 and 9, ∇ϕ is given.
7. i − j + 4zk
3
2
3 2
2
9. −6x yz i − 2x z j − 4x yzk
11. (cos(x + y + z) − x sin(x + y + z))i − x sin(x + y + z)(j + k)
13. ∇· (ϕF) =∇ϕ · F + ϕ(∇· F)
∇× (ϕF)=∇ϕ × F + ϕ(∇× F)
CHAPTER TWELVE VECTOR INTEGRAL CALCULUS
Section 12.1 Line Integrals
√
1. 0 3. 26 2/3 5. sin(3) − 81/2
7. 0 9. −422/5 11. −27/2
Section 12.2 Green’s Theorem
1. −8 3. −12 5. −40 7. 512π
9. 0 11. 95/4
13. By Green’s theorem,
∂u ∂u ∂ ∂u ∂ ∂u
− dx + dy = − − dA
C ∂y ∂x D ∂x ∂x ∂y ∂y
Section 12.3 An Extension of Green’s Theorem
1. 0
3. 2π if C encloses the origin; 0 otherwise
5. 0
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-835 27410_25_Ans_p801-866

