Page 860 - Advanced_Engineering_Mathematics o'neil
P. 860
840 Answers to Selected Problems
Section 13.5 The Phase Angle Form
1. αf (t + p) + β fg(t + p) = αf (t) + βg(t)
3. f (t + p + h) − f (t + p)
f (t + p)= lim h→0
h
f (t + h) − f (t)
= lim h→0 = f (t)
h
5. The Fourier series is
∞
1 2 1
+ sin((2n − 1)πx),
2 π 2n − 1
n=1
so the phase angle form is
∞
2 1 π
1 + cos (2n − 1)πx −
π 2n − 1 2
n=1
7.
∞
19 1 nπx
+ c n cos + δ n
8 π 2 2
n=1
where
1
2
2
2
2
c n = 8 + 5n π − 12nπ sin(3nπ/2) + 4(n π − 2)cos(3nπ/2)
n 2
and
sin(3nπ/2) − nπ/2 − 2cos(3nπ/2)
δ n =−arctan .
nπ sin(3nπ/2) + cos(3nπ/2) − 1
9. Write f (x) = x for 0 ≤ x < 1and f (x) = x − 2for1 < x < 2. The phase angle form of the Fourier series is
∞
2 1 π
cos nπx + (−1) n .
π n 2
n=1
11. Write f (x) = 1for0 ≤ x < 1and f (x) = 2for1 < x < 3. The phase angle form of the Fourier series is
∞
3 2 1 πx π n
+ cos (2n − 1) + (1 − (−1) ) .
2 π 2n − 1 2 2
n=1
Section 13.6 Complex Fourier Series
3i ∞ 1
1. 3 + + e 2nπix/3
π n=−∞,n
=0 n
3 1 1
3. − ∞ (sin(nπ/2) + (cos(nπ/2) − 1)i)e nπix/2
4 2π n=−∞,n
=0 n
1 3i
5. + ∞ e (2n−1)πix/2
n=−∞,n
=0
2 π
Section 13.7 Filtering of Signals
1. The complex Fourier series is
∞
i
n
((−1) − 1)e inπt/2 .
nπ
n=−∞,n
=0
The Nth partial sum is
∞
4 1 (2n − 1)πt
S N (t) = sin .
π 2n − 1 2
n=1
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-840 27410_25_Ans_p801-866

