Page 862 - Advanced_Engineering_Mathematics o'neil
P. 862
842 Answers to Selected Problems
9. For all x,
∞
2
cos(ωx)dω = e −|x| .
π(1 + ω )
2
0
11. Because f (t)cos(ω(t − x)) is even in ω and f (t)sin(ω(t − x)) is odd, we can write
1 ∞ ∞ 1 ∞ ∞
f (t)cos(ω(t − x))dt dω = f (t)cos(ω(t − x))dω dt
π 0 −∞ 2π −∞ −∞
1 ∞ ∞
= f (t)e iω(t−x) dω dt.
2π
−∞ −∞
Complete the derivation by carrying out the inner integration in the last double integral.
Section 14.2 Fourier Cosine and Sine Integrals
1. Sine integral:
4
∞
2
[10ω sin(10ω) − (50ω − 1)cos(10ω) − 1]sin(ωx)dω.
πω 3
0
Cosine integral:
∞
4 2
[10ω cos(10ω) − (50ω − 1)sin(10ω)]cos(ωx)dω.
πω 3
0
2
Both integrals converge to x for 0 ≤ x < 10, to 50 if x = 10andto0if x > 10.
3. Sine integral:
∞
2
[1 + cos(ω) − 2cos(4ω)]sin(ωx)dω.
πω
0
Cosine integral:
∞ 2
[2sin(4ω) − sin(ω)]cos(ωx)dω.
πω
0
Both integrals converge to 1 for 0 < x < 1, to 3/2for x = 1, to 2 for 1 < x < 4, to 1 for x = 4andto 0for x > 4. The
cosine integral converges to 1 at x = 0 while the sine integral converges to 0 at x = 0.
5. Sine integral:
∞
2 4
[1 + (1 − 2π)cos(πω) − 2cos(3πω)]+ sin(πω) sin(ωx)dω.
πω πω 2
0
Cosine integral:
∞ 2 4
[(2π − 1)sin(πω) + 2sin(3πω)]+ [cos(πω) − 1] cos(ωx)dω.
πω πω 2
0
Both integrals converge to 1 + 2x for 0 < x <π,to (3 + 2π)/2for x = π,to2for π< x < 3π,to1for x = 3π,andto
0for x > 3π. The sine integral converges to 0 at x = 0, while the cosine integral converges to 1 for x = 0.
7. Sine integral:
∞ 3
2 ω
sin(ωx)dω.
0 π 4 + ω 4
Cosine integral:
∞
2 2 + ω
2
cos(ωx)dω.
π 4 + ω 4
0
Both integrals converge to e −x cos(x) for x > 0. the cosine integral converges to 1 for x = 0 and the sine integral
convergesto0at x = 0.
9. Sine integral:
∞
2k
(1 − cos(cω))sin(ωx)dω.
πω
0
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-842 27410_25_Ans_p801-866

