Page 863 - Advanced_Engineering_Mathematics o'neil
P. 863

Answers to Selected Problems  843


                                Cosine integral:
                                                                 ∞
                                                                   2k

                                                                      sin(cω)cos(ωx)dω.
                                                                   πω
                                                                0
                                Both integrals converge to k for 0 < x < c,to k/2for x = c, and to 0 for x > c, while the sine integral converges to 0 at
                                x = 0, and the cosine integral to k there.
                            11. From the Laplace integrals and the convergence theorem, for x > 0,
                                                        2k     ∞  1           2     ∞  ω
                                                  e −kx  =         cos(ωx)dω =           sin(ωx)dω.
                                                              2
                                                        π  0  k + ω 2         π  0  k + ω 2
                                                                                    2
                                Put k = 1 and interchange the symbols x and ω to obtain
                                                                 πe −ω     ∞  1
                                                             A ω =   =         cos(ωx)dx
                                                                  2k    0  1 + x  2
                                and
                                                                 πe −ω     ∞  x
                                                            B ω =    =         sin(ωx)dx.
                                                                  2     0  1 + x  2
                                                                   2
                                Therefore, the Fourier cosine integral of 1/(1 + x ) is
                                                                ∞                1

                                                         C(x) =   e −ω  cos(ωx)dω =  2  for x ≥ 0.
                                                               0               1 + x
                                                             2
                                And the Fourier sine integral of x/(1 + x ) is
                                                                ∞                x

                                                         S(x) =   e −ω  sin(ωx)dω =  2  for x > 0.
                                                               0               1 + x
                            Section 14.3 The Fourier Transform
                             1. 2i[cos(ω) − 1]/ω  3. 10e −7iω  sin(4ω)/ω
                                  4
                             5.       e −(1+4iω)k/4  7. πe −|ω|
                                1 + 4iω
                                  24
                             9.       e 2iω
                                16 + ω 2

                                   2
                            11. 18   e −8t 2 e −4it  13. H(t + 2)e −10−(5−3i)t
                                   π
                            15. H(t)[2e −3t  − e −2t ]  17. H(t)te −t
                                                               1
                                                                     2
                                       2
                                   ∞        1    ∞
                            19.    | f (t)| dt =  ˆ f (ω) ˆ f (ω)dω =  | ˆ f (ω)| dω
                                            2π                2π
                                −∞             −∞
                            21. 3π
                                   3    2
                            23. (2/ω )[25ω sin(5ω) + 10ω cos(5ω) − 2sin(5ω)]
                                  1                             i
                                                                    −4
                                                                               −4
                                                    −4
                                         −4
                            25.      (1 − e cos(4ω) + e sin(4ω)) +  (e sin(4ω) + (e cos(4ω) − 1)ω)
                                1 + ω  2                      1 + ω  2
                                4                           8i
                            27.   (sin(2ω)(4ω − 1) + 2ω cos(2ω)) +  (2ω cos(2ω) − sin(2ω))
                                           2
                                ω 3                         ω 2
                            Section 14.4 Fourier Cosine and Sine Transforms
                                        1           ω
                             1. ˆ f C (ω) =  , ˆ f S (ω) =
                                      1 + ω 2      1 + ω 2
                             3. For ω 
=±1,
                                                               1 sin(K(1 − ω))  sin(K(1 + ω))

                                                         ˆ f C (ω) =         +             ,
                                                               2     1 − ω        1 + ω
                                                                           K   1
                                                              ˆ f C (−1) = ˆ f C (1) =  +  sin(2K)
                                                                            2  2
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-843        27410_25_Ans_p801-866
   858   859   860   861   862   863   864   865   866   867   868