Page 863 - Advanced_Engineering_Mathematics o'neil
P. 863
Answers to Selected Problems 843
Cosine integral:
∞
2k
sin(cω)cos(ωx)dω.
πω
0
Both integrals converge to k for 0 < x < c,to k/2for x = c, and to 0 for x > c, while the sine integral converges to 0 at
x = 0, and the cosine integral to k there.
11. From the Laplace integrals and the convergence theorem, for x > 0,
2k ∞ 1 2 ∞ ω
e −kx = cos(ωx)dω = sin(ωx)dω.
2
π 0 k + ω 2 π 0 k + ω 2
2
Put k = 1 and interchange the symbols x and ω to obtain
πe −ω ∞ 1
A ω = = cos(ωx)dx
2k 0 1 + x 2
and
πe −ω ∞ x
B ω = = sin(ωx)dx.
2 0 1 + x 2
2
Therefore, the Fourier cosine integral of 1/(1 + x ) is
∞ 1
C(x) = e −ω cos(ωx)dω = 2 for x ≥ 0.
0 1 + x
2
And the Fourier sine integral of x/(1 + x ) is
∞ x
S(x) = e −ω sin(ωx)dω = 2 for x > 0.
0 1 + x
Section 14.3 The Fourier Transform
1. 2i[cos(ω) − 1]/ω 3. 10e −7iω sin(4ω)/ω
4
5. e −(1+4iω)k/4 7. πe −|ω|
1 + 4iω
24
9. e 2iω
16 + ω 2
2
11. 18 e −8t 2 e −4it 13. H(t + 2)e −10−(5−3i)t
π
15. H(t)[2e −3t − e −2t ] 17. H(t)te −t
1
2
2
∞ 1 ∞
19. | f (t)| dt = ˆ f (ω) ˆ f (ω)dω = | ˆ f (ω)| dω
2π 2π
−∞ −∞
21. 3π
3 2
23. (2/ω )[25ω sin(5ω) + 10ω cos(5ω) − 2sin(5ω)]
1 i
−4
−4
−4
−4
25. (1 − e cos(4ω) + e sin(4ω)) + (e sin(4ω) + (e cos(4ω) − 1)ω)
1 + ω 2 1 + ω 2
4 8i
27. (sin(2ω)(4ω − 1) + 2ω cos(2ω)) + (2ω cos(2ω) − sin(2ω))
2
ω 3 ω 2
Section 14.4 Fourier Cosine and Sine Transforms
1 ω
1. ˆ f C (ω) = , ˆ f S (ω) =
1 + ω 2 1 + ω 2
3. For ω
=±1,
1 sin(K(1 − ω)) sin(K(1 + ω))
ˆ f C (ω) = + ,
2 1 − ω 1 + ω
K 1
ˆ f C (−1) = ˆ f C (1) = + sin(2K)
2 2
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-843 27410_25_Ans_p801-866

