Page 870 - Advanced_Engineering_Mathematics o'neil
P. 870

850    Answers to Selected Problems

                     29. f (x) = sin(πx)
                                         3.555896220J 1 (3.831705970x) + 1.670058301J 1 (7.015586670x)
                                         + 0.9956101332J 1 (10.173468144x) + 0.7772068876J 1 (13.32369194x)
                                         + 0.6036626350J 1 (16.47063005x)
                     31. f (x) = x
                                         7.749400696J 2 (5.135622302x) − 0.1583973994J 2 (8.417244140x)
                                          + 1.310726377J 2 (11.61984117x) − 0.2381008476J 2 (14.79595178x)
                                          + 0.9524470038J 2 (17.95981949x)
                     33. f (x) = xe −x
                                         1.418532841J 2 (5.135622302x) + 0.2923912667J 2 (8.417244140x)
                                         + 0.7581692534J 2 (11.61984117x) + 0.1399888559J 2 (14.79595178x)
                                         + 0.5434687461J 2 (17.95981949x)
                     35. f (x) = sin(πx)
                                          3.733991576J 2 (5.135622302x) + 2.468532251J 2 (8.417244140x)
                                          + 1.700629359J 2 (11.61984117x) + 1.356527124J 2 (14.79595178x)
                                          + 1.099075410J 2 (17.95981949x)
                     37. With t =ry,
                                                                          y
                                                      ∞              ∞       x−1 1

                                                           e
                                                   r  x  t  x−1 −rt  dt =r  x  e −y  dy
                                                      0             0     r    r

                                                                     ∞      1
                                                                          e
                                                                =r  x  y x−1 −y  dy
                                                                            r  x
                                                                    0
                                                                   ∞

                                                                        e
                                                                =    y x−1 −y  dy =  (x),
                                                                  0
                        with y used instead of t as the variable of integration in the last line.
                     39. Let t = u/(1 + u) to obtain
                                                          ∞

                                                 B(x, y) =  t  x−1 (1 − t) y−1 dt
                                                         0
                                                                          y−1
                                                        ∞
                                                                 x−1
                                                             u        1        1
                                                                                   du
                                                           1 + u    1 + u   (1 + u) 2
                                                       0
                                                          ∞    x−1
                                                              u

                                                       =         x+y  du.
                                                         0  (1 + u)
                     CHAPTER SIXTEEN THE WAVE EQUATION
                     16.1 Derivation of the Equation
                      1. Compute
                                                            2 2
                                                   2
                                                          2
                                                  ∂ y    n π c      nπx        nπct
                                                     =−       sin     cos       and
                                                  ∂t  2   L 2      L        L
                                                   2
                                                          2
                                                  ∂ y    n π  2    nπx       nπct
                                                     =−      sin     cos
                                                  ∂x  2   L  2   L        L
                      3. Compute
                                                       2
                                                      ∂ y  1
                                                         = ( f (x + ct) + f (x − ct))


                                                      ∂x  2  2
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-850        27410_25_Ans_p801-866
   865   866   867   868   869   870   871   872   873   874   875