Page 870 - Advanced_Engineering_Mathematics o'neil
P. 870
850 Answers to Selected Problems
29. f (x) = sin(πx)
3.555896220J 1 (3.831705970x) + 1.670058301J 1 (7.015586670x)
+ 0.9956101332J 1 (10.173468144x) + 0.7772068876J 1 (13.32369194x)
+ 0.6036626350J 1 (16.47063005x)
31. f (x) = x
7.749400696J 2 (5.135622302x) − 0.1583973994J 2 (8.417244140x)
+ 1.310726377J 2 (11.61984117x) − 0.2381008476J 2 (14.79595178x)
+ 0.9524470038J 2 (17.95981949x)
33. f (x) = xe −x
1.418532841J 2 (5.135622302x) + 0.2923912667J 2 (8.417244140x)
+ 0.7581692534J 2 (11.61984117x) + 0.1399888559J 2 (14.79595178x)
+ 0.5434687461J 2 (17.95981949x)
35. f (x) = sin(πx)
3.733991576J 2 (5.135622302x) + 2.468532251J 2 (8.417244140x)
+ 1.700629359J 2 (11.61984117x) + 1.356527124J 2 (14.79595178x)
+ 1.099075410J 2 (17.95981949x)
37. With t =ry,
y
∞ ∞ x−1 1
e
r x t x−1 −rt dt =r x e −y dy
0 0 r r
∞ 1
e
=r x y x−1 −y dy
r x
0
∞
e
= y x−1 −y dy = (x),
0
with y used instead of t as the variable of integration in the last line.
39. Let t = u/(1 + u) to obtain
∞
B(x, y) = t x−1 (1 − t) y−1 dt
0
y−1
∞
x−1
u 1 1
du
1 + u 1 + u (1 + u) 2
0
∞ x−1
u
= x+y du.
0 (1 + u)
CHAPTER SIXTEEN THE WAVE EQUATION
16.1 Derivation of the Equation
1. Compute
2 2
2
2
∂ y n π c nπx nπct
=− sin cos and
∂t 2 L 2 L L
2
2
∂ y n π 2 nπx nπct
=− sin cos
∂x 2 L 2 L L
3. Compute
2
∂ y 1
= ( f (x + ct) + f (x − ct))
∂x 2 2
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-850 27410_25_Ans_p801-866

