Page 874 - Advanced_Engineering_Mathematics o'neil
P. 874
854 Answers to Selected Problems
4
1
2
β k = ξ(ξ − 1)J 2 ( j 2k ξ) ,
[J 3 ( j 0k )] 2 0
p+1 1
4(−1)
δ pq = ξ J p ( j pq ξ)dξ .
pj pq [J p+1 ( j pq )] 2 0
Computing some of these terms, we have
z(r,θ,t) ≈
1.108022J 0 (1.202413r)cos(2.404826t) − 0.13977J 0 (2.760039r)cos(5.520078t)
+ 0.045476J 0 (4.32686r)cos(8.653728t) − 0.02099J 0 (5.895767r)cos(11.79153t)
+ 0.011636J 0 (7.465459t)cos(14.930918t) +···
+ cos(2θ)[−2.976777J 2 (2.567811r)cos(5.135622t)
− 1.434294J 2 (4.208622r)cos(8.417244t) +···]
+ sin(θ)[1.155175J 1 (1.915853r)sin(3.831706t)
− 0.14741J 1 (3.507794r)sin(7.015587t) + ···] + ··· .
Section 16.9 Vibrations in a Rectangular Membrane
n+1 2
8(−1) π 16 √
1 ∞ n 2
1. z(x, y,t) = + [(−1) − 1] sin(nx/2)sin(y)cos( n + 4t/2)
π n=1 n n 3
∞ ∞
3. z(x, y,t) = n=1 m=1 d nm cos((2n − 1)x/2)sin((2m − 1)y/2)sin(k nm t),
where
16
d nm = √
2
2
π (2n − 1)(2m − 1) (2n − 1) + (2m − 1) 2
and
2
2
k nm = (2n − 1) + (2m − 1) .
CHAPTER SEVENTEEN THE HEAT EQUATION
Section 17.1 Initial and Boundary Conditions
2
1. ∂u ∂ u
= k for t > 0,0 < x < L,
∂t ∂x 2
∂u
u(0,t)= (L,t) = 0for t > 0,
∂x
u(x,0)= f (x)
2
3. ∂u ∂ u
= k for t > 0,0 < x < L,
∂t ∂x 2
∂u
(0,t)= 0,u(L,t) = β(t) for t > 0,
∂x
u(x,0)= f (x)
Section 17.2 The Heat Equation on [0, L]
In these solutions, we sometimes use the notation exp(g(t)) = e g(t) .
8L 2
∞ 2 2 2
1. u(x,t) = sin((2n − 1)πx/L)exp(−(2n − 1) π kt/L )
n=1 3 3
(2n − 1) π
3.
∞
2
2
2
u(x,t) = d n sin((2n − 1)πx/L)exp(−3(2n − 1) π t/L )
n=1
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-854 27410_25_Ans_p801-866

