Page 93 - Advanced Gas Turbine Cycles
P. 93
Chapter 4. Cycle eficiency with turbine cooling (coolingfiow rates specified) 69
References
[I] Mukherjee, D.K. (1976). Design of turbines, using distributed or average losses; effect of blading, AGARD
195, 8-1-8-13.
[2] Chiesa, P., Consonni, S., Lozza, G. and Macchi, E. (1993). Redicting the ultimate performance of advanced
power cycles based on vely high temperatures, ASME paper 93-GT-223.
[3] Horlock J.H., Watson, D.E. and Jones, T.V. (2001), Limitations on gas turbine performance imposed by
large turbine cooling flows, ASME J. Engng Gas Turbines Power 123(3), 487-494.
[4] Hawthorne, W.R. and Davis, G.de V. (1956). Calculating gas turbine performance, Engineering 181,
361 -361.
[SI Horlock, J.H. (2001). Basic thermodynamics of turbine cooling, ASME J. Turbomachinery 123(3),
583-592.
[6] Denton, J.D (1993). Loss mechanisms in turbomachines, ASME paper 93-GT-435.
[7] Young, J.B. and Wilccck, R.C. (2002). Modelling the aircooled gas turbine, Partl, ASME J. Turbo-
machinery 124, 207-213.
[8] Traupel, W. (1966). Thermische Turbomaschinen, Springer Verlag, Berlin.
[91 Hawthome, W.R. (1956). The thermodynamics of cooled turbines, Parts I and II, Proc. ASME 78, 1765 (see
also p. 1781).
[IO] El-Masri, M.A. (1987). Exergy analysis of combined cycles. Part 1. Air-cooled Braytoncycle gas turbines,
ASME J. Engng Power Gas Turbines 109,228-235.
[I 11 Young, J.B. (1998). Computer-based project on combinedcycle power generation, Cambridge University
Tnternal Report.
[I21 Holland, M.J. and Thake, T.F. (1980). Rotor blade cooling in high pressure turbines, AIAA J. Aircraft 17(6),
412-418.
[I31 Shapiro, A.H. (1953). The dynamics and thermodynamics of compressible fluid flow, Ronald Press,
New York.
[14] Hartsel, J.E. (1972). Prediction of effects of mass-transfer cooling on the blade-row efficiency of turbine
airfoils, AIAA paper 72- I I.