Page 166 - Advanced Linear Algebra
P. 166

150    Advanced Linear Algebra



               or equivalently,



                                      ~  ‚  ‚ Ä ‚
             )
            2   As to uniqueness, suppose that 4  is also the direct sum
                                   4 ~ ºº" »» l Ä l ºº" »»


               of cyclic submodules with annihilators  ann²ºº" »»³ ~ º  » , arranged in


               ascending order
                                 ann ²           ann ºº" »»³
                                                    ²ºº" »»³ ‹ Ä ‹

               or equivalently

                                       ‚  ‚ Ä ‚

               Then the two chains of annihilators are identical, that is,  ~   and
                                    ann ²      ann ºº# »»³
                                                  ²ºº" »»³ ~


               for all  . Thus,  —         and        ~      for all  .

            3  Two  -primary  -modules
             )

                            9
                                    4 ~ ºº# »» l Ä l ºº# »»


               and
                                    5 ~ ºº" »» l Ä l ºº" »»


               are isomorphic if and only if they have the same annihilator chains, that is,
               if and only if  ~   and, after a possible reindexing,
                                    ann ²      ann ºº# »»³
                                                  ²ºº" »»³ ~

            Proof. Let # 4   have order equal to the order of 4 , that is,


                                 ann²# ³ ~  ann²4³ ~ º  »

            Such an element must exist since  ²# ³       for all #  4  and if this inequality

            is strict, then      c   will annihilate  4  .
            If  we  show that  ºº# »»  is complemented, that is,  4 ~ ºº# »» l :        for some

                                    is also a finitely generated primary torsion module
            submodule :    , then since :
            over  , we can repeat the process to get
                9
                                  4  ~  # ºº »»  l    # ºº »»  l    :
            where ann²# ³ ~ º  » . We can continue this decomposition:


                            4  ~  # ºº »»  l    # ºº »»  l    Ä  l  # ºº »»  l    :
            as long as : £ ¸ ¹ . But the ascending sequence of submodules
   161   162   163   164   165   166   167   168   169   170   171