Page 169 - Advanced Linear Algebra
P. 169

Modules Over a Principal Ideal Domain  153



            Then
                                  4 ~  ºº# »» l Ä l  ºº# »»


            and
                                  4 ~  ºº" »» l Ä l  ºº" »»

                                                      !
            But  ºº# »» ~ ºº # »»  is a cyclic submodule of 4   with annihilator º   c  »  and so



            by the induction hypothesis
                                  ~ ! and       ~   ÁÃÁ  ~

            which concludes the proof of uniqueness.
            For part 3), suppose that  ¢4 š 5  and 4  has annihilator chain
                                   ²
                                                   ²º
                                ann º# »»³ ‹ Ä ‹  ann ºº# »»³


            and   has annihilator chain
                5
                                   ²
                                                   ²º
                                ann º" »»³ ‹ Ä ‹  ann ºº" »»³


            Then


                              5 ~ 4 ~ ºº # »» l Ä l ºº # »»



            and so  ~   and after a suitable reindexing,
                            ann²ºº# »»³ ~  ann²ºº # »»³ ~  ann²ºº" »»³



            Conversely, suppose that
                                  4 ~ ºº# »» l Ä l ºº# »»


            and
                                  5 ~ ºº" »» l Ä l ºº" »»


            have the same annihilator chains, that is,  ~   and
                                   ann ²      ann ºº# »»³
                                                 ²ºº" »»³ ~

            Then
                                      9           9
                           ºº" »» š         ~           š ºº# »»           …


                                  ann ²ºº" »»³  ann ²ºº# »»³


            The Primary Cyclic Decomposition
            Now we can combine the various decompositions.
                         (
            Theorem 6.13  The primary cyclic  decomposition  theorem) Let  4  be a
            finitely generated torsion module over a principal ideal domain  .
                                                                9
   164   165   166   167   168   169   170   171   172   173   174