Page 169 - Advanced Linear Algebra
P. 169
Modules Over a Principal Ideal Domain 153
Then
4 ~ ºº# »» l Ä l ºº# »»
and
4 ~ ºº" »» l Ä l ºº" »»
!
But ºº# »» ~ ºº # »» is a cyclic submodule of 4 with annihilator º c » and so
by the induction hypothesis
~ ! and ~ ÁÃÁ ~
which concludes the proof of uniqueness.
For part 3), suppose that ¢4 5 and 4 has annihilator chain
²
²º
ann º# »»³ Ä ann ºº# »»³
and has annihilator chain
5
²
²º
ann º" »»³ Ä ann ºº" »»³
Then
5 ~ 4 ~ ºº # »» l Ä l ºº # »»
and so ~ and after a suitable reindexing,
ann²ºº# »»³ ~ ann²ºº # »»³ ~ ann²ºº" »»³
Conversely, suppose that
4 ~ ºº# »» l Ä l ºº# »»
and
5 ~ ºº" »» l Ä l ºº" »»
have the same annihilator chains, that is, ~ and
ann ² ann ºº# »»³
²ºº" »»³ ~
Then
9 9
ºº" »» ~ ºº# »»
ann ²ºº" »»³ ann ²ºº# »»³
The Primary Cyclic Decomposition
Now we can combine the various decompositions.
(
Theorem 6.13 The primary cyclic decomposition theorem) Let 4 be a
finitely generated torsion module over a principal ideal domain .
9