Page 170 - Advanced Linear Algebra
P. 170

154    Advanced Linear Algebra



             )
            1   If 4  has order

                                           ~  Ä


               where the     's are distinct nonassociate primes  in  9    ,  then  4    can  be
                                 (
               uniquely decomposed  up to the order of the summands  into the direct sum
                                                            )

                                     4~ 4 l Ä l 4
               where


                               4 ~      4 ~ ¸#  4 “   # ~  ¹




               is a primary submodule with annihilator  º  » . Finally, each primary


                             can be written as a direct sum of cyclic submodules, so that
               submodule 4
                         ’•••••••••“•••••••••”      ’•••••••••“•••••••••”
                    4 ~ ´ ºº# »» lÄlºº#      Á     »» µlÄl´ºº#    Á     »»lÄlºº#    Á     »»µ
                             Á



                                  4                          4
                                      Á
               where ann²ºº# »»³ ~ º  »  and the terms in each cyclic decomposition can
                            Á

               be arranged so that, for each  ,

                                                    ²º
                                   ²
                                ann º# »»³ ‹ Ä ‹  ann ºº#  Á    »»³
                                       Á
               or, equivalently,
                                      ~       ‚  Á      ‚  Á   Ä  ‚      Á
            2   As for uniqueness, suppose that
             )
                                                                       »»µ
                         ’•••••••••“•••••••••”
                                                         »»lÄlºº"
                                                                     Á


                            Á

                   4 ~ ´ºº" »» lÄlºº"      Á        »»µlÄl´ºº"    ’••••••••••“••••••••••”
                                                        Á

                                 5                           5
               is also a primary cyclic decomposition of 4 . Then,
               a   The number of summands is the same in both decompositions; in fact,
                )
                                                    ~   for all  ".
                    ~  and after possible reindexing,  "  "
                )
               b   The primary submodules are the same; that is, after possible
                   reindexing,  —        and 5 ~ 4


               c   For each primary submodule pair  5~ 4            ,  the  cyclic  submodules
                )
                   have the same annihilator chains; that is, after possible reindexing,
                                     ann²ºº" »»³ ~  ann²ºº# »»³
                                                        Á
                                            Á
                   for all  Á   .
               In summary, the primary submodules and annihilator chains are uniquely
               determined by the module 4 .
            3   Two  -modules  4   and   are isomorphic if and only if they have the same
             )
                                   5
                   9
               annihilator chains.…
   165   166   167   168   169   170   171   172   173   174   175