Page 172 - Advanced Linear Algebra
P. 172

156    Advanced Linear Algebra



             )
            2   The elementary divisors of 4  are
                            ElemDiv²4³ ~  ElemDiv²(³ r  ElemDiv²)³

               where the union is a multiset union; that  is,  we  keep  all  duplicate
               members.…
            The Invariant Factor Decomposition

            According to Theorem 6.4, if   and   are cyclic submodules with relatively
                                     :
                                           ;
            prime orders, then :l ;  is a cyclic submodule whose order is the product of
            the orders of   and  . Accordingly, in the primary cyclic decomposition of  4  ,
                      :
                            ;
                                                                    »»µ
                        ’•••••••••“•••••••••”


                  4 ~ ´ ºº# »» lÄlºº#      Á        »» µlÄl´ºº#    ’•••••••••“•••••••••”
                           Á
                                                       »»lÄlºº#
                                                                  Á
                                                      Á


                                4                          4
            with elementary divisors       Á   satisfying

                                    ~       ‚  Á      ‚  Á   Ä  ‚        (6.3 )
                                                      Á
            we can combine cyclic summands with relatively prime orders. One judicious
                                            (
                                                       )
            way to do this is to take the leftmost  highest-order  cyclic submodules from
            each group to get

                                 + ~ ºº# »» l Ä l ºº#    Á     »»

                                         Á

            and repeat the process


                                         Á

                                 + ~ ºº# »» l Ä l ºº#    Á     »»
                                                      »»
                                         Á


                                 + ~ ºº# »» l Ä l ºº#    Á

                                     Å
            Of course, some summands may be missing  here  since  different  primary
                        do not necessarily have the same number of summands. In any
            modules  4
            case, the result of this regrouping and combining is a decomposition of the form
                                    4~ + l Ä l +
            which is called an invariant factor decomposition  of 4 .
            For example, suppose that
                  4 ~ ´ºº# »» l ºº# »»µ l ´ºº# »»µ l ´ºº# »» l ºº# »» l ºº# »»µ
                                                    Á
                                                                    Á
                                  Á
                           Á
                                                            Á
                                           Á
            Then the resulting regrouping and combining gives
                 4 ~ ´ ºº# »» l ºº# »» l ºº# »» µ l ´ ºº# »» l ºº# »» µ l ´ ºº# »» µ
                                                                 ‘
                      ’•••••••••••“•••••••••••”
                                               ’•••••“•••••”
                          Á
                                  Á
                                         Á
                                                           Á
                                                                    Á
                                                   Á
                                +                    +             +
            As to the orders of the summands, referring to  6.3 , if +  (  )   has order  , then


                                                            , the second–highest
            since the highest powers of each prime   are taken for
            for   and so on, we conclude that
   167   168   169   170   171   172   173   174   175   176   177