Page 275 - Advanced Linear Algebra
P. 275

Chapter 11

            Metric Vector Spaces: The Theory of
            Bilinear Forms
















            In this chapter, we study vector spaces over arbitrary fields that have a bilinear
            form defined on them.

            Unless  otherwise  mentioned, all vector spaces are assumed to be finite-
                                 -
            dimensional. The symbol   denotes an arbitrary field and -     denotes a finite
            field of size  .

            Symmetric, Skew-Symmetric and Alternate Forms
            We begin with the basic definition.

                                                -
            Definition  Let  =    be a vector space over  . A mapping  ºÁ »¢ = d = ¦ -   is
            called a bilinear form  if it is linear in each coordinate, that is, if
                               º % b &Á'» ~ º%Á'» b º&Á'»




            and




                               º'Á % b &» ~ º'Á %» b º'Á &»
            A bilinear form is
            1 symmetric  if
             )
                                        º%Á &» ~ º&Á %»
                for all %Á   &  =  .
             )
            2 skew-symmetric  ( or antisymmetric )  if
                                        º%Á &» ~ cº&Á %»
                for all %Á &  =  .
   270   271   272   273   274   275   276   277   278   279   280