Page 278 - Advanced Linear Algebra
P. 278

262    Advanced Linear Algebra




            Note that if %~       then
                         '
                                            v  º  Á %»  y

                                   4´%µ ~       Å
                                         8
                                     8
                                            w  º  Á %»  z

            and
                                !
                              ´%µ 4 ~ º%Á   » Ä º%Á   »
                                   8
                                8
            It follows that if &~         , then

                                                      v      y
                         !
                      ´%µ 4 ´&µ ~ º%Á  » Ä º%Á  »       Å  ~ º%Á &»
                         8  8  8
                                                      w  z

                                                          !
                                                              8
            and this uniquely defines the matrix 4 8  , that is, if ´%µ (´&µ ~ º%Á &»  for all
                                                          8
            %Á &  = , then  ( ~ 4 .
                              8
            A matrix is alternate  if it is skew-symmetric and has  's on the main diagonal.

            Thus, we can say that a form is symmetric (skew-symmetric, alternate) if and
                              is symmetric (skew-symmetric, alternate).
            only if the matrix 4 8
            Now let us see how the matrix of a form behaves with respect to a change of
            basis. Let 9 ~²  Á Ã Á   ³  be an ordered basis for  . Recall from Chapter 2 that
                                                    =


            the change of basis matrix  4  , whose  th column is     ´     µ  8 , satisfies
                                              98 Á
                                      ´#µ ~ 4 9  8  ´#µ 9 Á
                                        8
            Hence,
                                       !
                              º%Á &» ~ ´%µ 4 ´&µ 8
                                           8
                                       8
                                        !
                                                 8
                                   ~ ²´%µ 4 9  !  Á 8  ³4 ²4 9  8  ´&µ ³
                                                         9 Á
                                        9
                                       !
                                   ~´%µ ²4 !    8
                                       9   9  Á 8  4 4 9  Á 8  ³´&µ 9
            and so
                                    4~ 4   !  4 4 9  8  Á 8 98 Á
                                      9
            This prompts the following definition.
            Definition Two matrices  (Á )  C   ²-³  are  congruent  if there exists an
            invertible matrix   for which
                          7
                                             !
                                       (~ 7 )7
            The equivalence classes under congruence are called congruence classes .…
   273   274   275   276   277   278   279   280   281   282   283