Page 448 - Advanced Linear Algebra
P. 448

432    Advanced Linear Algebra




                                           ²% b : ³ ~    ²%    b : ³ ~ % b  :
                             2          2              2
            We leave proof of part 2) to the reader.

            For part 3), since %Á &  ? v @  , it follows that
                                  ?v @ ~ % b < ~ & b <
                           <
            for some subspace   of  . Thus, %c&  < . Also, % b: ‹ % b<  implies that
                               =
            :‹ < and similarly   ; ‹ < , whence   : b ; ‹ <  and so if   > ~
            º% c&»b: b; ,  then   > ‹ < .  Hence,   % b> ‹ % b< ~ ? v@ . On the
            other hand,
                                   ? ~ %b: ‹ %b>
            and
                           @ ~ & b ;~ % c ²% c &³ b ;‹ % b >

            and so ?v @ ‹ % b > . Thus, ?v @ ~ % b >  .

                                                                   @
            If ?q @ £ J , then we may take the flat representatives for   and   to be any
                                                             ?
            element ' ? q @  , in which case part 1) gives
                         ?v @ ~ 'b ²º'c '» b : b ;³ ~ 'b : b ;
            and since %  ? v @  , we also have ? v@ ~ % b: b;  .…

            We can now describe the dimension of the join of two flats.

            Theorem 16.6 Let ?~ % b :  and @ ~ & b ;   be flats in  .
                                                           =
             )
            1 If ?q @ £ J , then
                   dim²? v @ ³ ~  dim²: b ;³ ~  dim²?³ b  dim²@ ³ c  dim²? q @ ³
             )
            2 If ?q @ ~ J , then
                                 dim²? v @ ³ ~  dim²: b ;³ b

            Proof. We have seen that if ?q @ £ J , then
                                    ?v @ ~ % b : b ;
            and so

                                 dim²? v @ ³ ~  dim²: b ;³
            On the other hand, if ?q @ ~ J , then
                              ? v @ ~ %b²º%c&» b: b;³

            and since dim²º% c &»³ ~   , we get
   443   444   445   446   447   448   449   450   451   452   453