Page 449 - Advanced Linear Algebra
P. 449

Affine Geometry   433




                               dim²? v @ ³ ~  dim²: b ;³ b
            Finally, we have
                         dim²: b ;³ ~  dim²:³ b  dim²;³ c  dim²: q ;³

            and Theorem 16.5 implies that
                                 dim²? q @ ³ ~  dim²: q ;³                 …

            Affine Independence

            We now discuss the affine counterpart of linear independence.

                                                           =
            Theorem 16.7  Let  ?   be a nonempty set of vectors in  . The following are
            equivalent:
             )
            1   For all %? , the set
                                        ²? c %³ ± ¸ ¹
               is linearly independent.
             )
            2  For all %? ,
                                     %¤ affhull ²? ± ¸%¹³

             )
            3   For any vectors % ? ,

                                          % ~ Á      ~   ¬      ~  for all

             )
            4   For affine combinations of vectors in  ,
                                              ?
                                         % ~       %  ¬      ~    for all


             )
            5   When ? ~ ¸% ÁÃÁ% ¹  is finite,


                                    dim ²    ²affhull  ?  ³  ³  ~     c
            A set   of vectors satisfying any  any hence all  of these conditions is said to be
                                       (
                                                  )
                ?
            affinely independent.
            Proof. If 1) holds but there is an affine combination equal to  ,
                                                             %

                                       %~       %

                                            ~

            where %£ %  for all  , then


                                        ²% c %³ ~


                                      ~
   444   445   446   447   448   449   450   451   452   453   454