Page 259 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 259

The Mitsunobu conditions can be used for alkylation of 2-pyridones, as in the course  231
              of synthesis of analogs of the antitumor agent camptothecin.
                                                                                            SECTION 3.2
                                                    CH
              CH 3                                    3                                     Introduction of
                   N                      O              N  N                           Functional Groups by
                      N               H                                    O          Nucleophilic Substitution
                                                      3
                                         N     O    Ph P  O          CH                  at Saturated Carbon
                    O         CH OH +                                  2  N     O
                                 2
                                                 O  DEAD
                    O      N   I           C H OH         O      N   I           O
                                            2 5
                                                                               OH
                                                                           C H 5
                                                                            2
                                                                              Ref. 66
              Proline analogs can be obtained by cyclization of  -hydroxyalkylamino acid
              carbamates.
                                                  PPh           Ph
                                          C H        3
                          HO         NHCO 2 2 5             N    CO C H
                                                                   2 2 5
                                 Ph CO C H        DEAD
                                      2 2 5
                                                            CO C H            Ref. 67
                                                               2 2 5
              Mitsunobu conditions are effective for glycosylation of weak nitrogen nucleophiles,
              such as indoles. This reaction has been used in the synthesis of antitumor compounds.
                           CH 3
                                                                       CH 3
                        O  N  O
                                                                    O  N  O
              PhCH 2 O               +     Ph 3 P
                                                          PhCH 2 O
                        N      N
                                         iPrO 2 CN  NCO 2 i Pr      N     N
                                                                  O
                        H      CO 2 C(CH 3 ) 3          PhCH 2 OCH 2
                                                                           CO 2 C(CH 3 ) 3
                               O  OH
                    PhCH 2 OCH 2                                    OCH 2 Ph
                                                            PhCH 2 O
                                 OCH 2 Ph
                         PhCH 2 O
                                                                              Ref. 68
                  Azides are useful intermediates for synthesis of various nitrogen-containing
              compounds. They can also be easily reduced to primary amines and undergo cycload-
              dition reactions, as is discussed in Section 6.2. Azido groups are usually introduced
              into aliphatic compounds by nucleophilic substitution. 69  The most reliable procedures
                                                                    70
                                                                             71
              involve heating an appropriate halide with sodium azide in DMSO or DMF. Alkyl
              azides can also be prepared by reaction in high-boiling alcohols. 72
                                        CH CH (OCH CH ) OH
                                                  2
                                                     2 2
                                           3
                                              2
                      CH (CH ) CH I  +  NaN 3             CH (CH ) CH N
                        3
                                2
                            2 3
                                                            3
                                                                    2 3
                                                                2 3
                                                 O
                                               H 2                      84%
              66   F. G. Fang, D. D. Bankston, E. M. Huie, M. R. Johnson, M.-C. Kang, C. S. LeHoullier, G. C. Lewis,
                 T. C. Lovelace, M. W. Lowery, D. L. McDougald, C. A. Meerholz, J. J. Partridge, M. J. Sharp, and
                 S. Xie, Tetrahedron, 53, 10953 (1997).
              67
                 J. van Betsbrugge, D. Tourwe, B. Kaptein, H. Kierkals, and R. Broxterman, Tetrahedron, 53, 9233
                 (1997).
              68   M. Ohkubo, T. Nishimura, H. Jona, T. Honma, S. Ito, and H. Morishima, Tetrahedron, 53, 5937 (1997).
              69   M. E. C. Biffin, J. Miller, and D. B. Paul, in The Chemistry of the Azido Group, S. Patai, ed., Interscience,
                 New York, 1971, Chap. 2.
              70
                 R. Goutarel, A. Cave, L. Tan, and M. Leboeuf, Bull. Soc. Chim. France, 646 (1962).
              71   E. J. Reist, R. R. Spencer, B. R. Baker, and L. Goodman, Chem. Ind. (London), 1794 (1962).
              72
                 E. Lieber, T. S. Chao, and C. N. R. Rao, J. Org. Chem., 22, 238 (1957); H. Lehmkuhl, F. Rabet, and
                 K. Hauschild, Synthesis, 184 (1977).
   254   255   256   257   258   259   260   261   262   263   264