Page 815 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 815

Scheme 9.1. (Continued)                                   791
                 C. Formation of aldehydes                                                  SECTION 9.1
                           CH                       CH 3
                13 l         3       1) KBH(O-i-Pr) 3                                        Organoboron
                                      2) CO                                                   Compounds
                               9-BBN                     CH  O
                                           –
                                      3) H O ,  OH
                                        2  2
                 14 m                                      96%
                           CH         1) LiCHOCH        CH 3
                             3                3
                               O         SPh
                              B                            CH  O
                                     2) HgCl
                               O          2
                                     3) H O , pH 8
                                        2  2
                                                            64%
                 a. H. C. Brown and M. W. Rathke, J. Am. Chem. Soc., 89, 2737 (1967).
                 b. J. L. Hubbard and H. C. Brown, Synthesis, 676 (1978).
                 c. R. J. Hughes, S. Ncube, A. Pelter, K. Smith, E. Negishi, and T. Yoshida, J. Chem. Soc., Perkin Trans. 1, 1172
                  (1977); S. Ncube, A. Pelter, and K. Smith, Tetrahedron Lett., 1893, 1895 (1979).
                 d. H. C. Brown, T. Imai, P. T. Perumal, and B. Singaram, J. Org. Chem., 50, 4032 (1985).
                 e. H. C. Brown, A. S. Phadke, and N. G. Bhat, Tetrahedron Lett., 34, 7845 (1993).
                 f. H. C. Brown and M. W. Rathke, J. Am. Chem. Soc., 89, 2738 (1967).
                 g. H. C. Brown and E. Negishi, J. Am. Chem. Soc., 89, 5285 (1967).
                 h. S. U. Kulkarni, H. D. Lee, and H. C. Brown, J. Org. Chem., 45, 4542 (1980).
                 i. A. Pelter, K. Smith, M. G. Hutchings, and K. Rowe, J. Chem. Soc., Perkin Trans. 1, 129 (1975).
                 j. H. C. Brown and S. U. Kulkarni, J. Org. Chem., 44, 2422 (1979).
                 k. T. A. Bryson and W. E. Pye, J. Org. Chem., 42, 3214 (1977).
                 l. H. C. Brown, J. L. Hubbard, and K. Smith, Synthesis, 701 (1979).
                m. H. C. Brown and T. Imai, J. Am. Chem. Soc., 105, 6285 (1983).
                  As can be judged from the preceding discussion, organoboranes are versatile
              intermediates for formation of carbon-carbon bonds. An important aspect of all of
              these synthetic procedures involving boron to carbon migration is that they occur with
              retention of the configuration of the migrating group. Since effective procedures for
              enantioselective hydroboration have been developed (see Section 4.5.3), these reactions
              offer the opportunity for enantioselective synthesis. A sequence for enantioselective
              formation of ketones starts with hydroboration by mono(isopinocampheyl)borane,
                                                               16
               IpcBH  , which can be obtained in high enantiomeric purity. The hydroboration of a
                    2
              prochiral alkene establishes a new stereocenter. A third alkyl group can be introduced
              by a second hydroboration step.
                                               H                          CH R′
                                                                       CH 2  2
                           R       R
                       BH 2  +  C  C           B   CH 2 R R′CH  CH 2    B   CH 2 R
                                               H                         H
                           H       H              R                        R
              The trialkylborane can be transformed to a dialkyl(ethoxy)borane by heating with
              acetaldehyde, which releases the original chiral  -pinene. Finally application of one
              of the carbonylation procedures outlined in Scheme 9.1 gives a chiral ketone. 17  The
              enantiomeric excess observed for ketones prepared in this way ranges from 60–90%.
                       CH R′                               1) Cl CHOCH ,   O
                    CH 2  2                        CH CH R′   2     3
                                                                 –
                             CH CH  O                2  2    Et CO Li +        CH R
                                                              3
                    B   CH R   3                       CH R         R′CH 2 CH 2 C  2
                          2
                                            +  C H O  B  2                  H  R
                                                5
                                              2
                                                              –
                     H  R                                   2)  OH, H O 2
                                                                  2
                                                    H  R
              16   H. C. Brown, P. K. Jadhav, and A. K. Mandal, J. Org. Chem., 47, 5074 (1982).
              17
                 H. C. Brown, R. K. Jadhav, and M. C. Desai, Tetrahedron, 40, 1325 (1984).
   810   811   812   813   814   815   816   817   818   819   820