Page 274 - Advanced Thermodynamics for Engineers, Second Edition
P. 274

263
                                                 12.7 EXAMPLES OF SIGNIFICANCE OF K p



                  Dissociation of CO 2 (Eqn (12.29))
                                                             a
                                               aCO 2 5 aCO þ O 2
                                                             2
                  Total combustion equation with dissociation

                              1                                         a
                      1:1CO þ ðO 2 þ 3:76N 2 Þ / ð1   aÞCO 2 þð0:1 þ aÞCO þ O 2 þ 1:88N 2  (12.77)
                              2                                         2
                      |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}  |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
                              n R ¼3:48                      n P ¼2:98þa=2
                                          , is given by Eqn (12.70):
                  The equilibrium constant, K p r

                                                       p p 0
                                                            CO 2
                                              K p r  ¼
                                                   	       	    1
                                                                 2
                                                    p p 0   p p 0
                                                         CO      O 2
                  The values of partial pressures in the products are
                            p 2  1   a p 2  p CO    p 2  0:1 þ a p 2         p 2  a p 2
                  p CO 2                                             p O 2
                                        ;                         ;                    :   (12.78)
                       ¼ x CO 2  ¼             ¼ x CO  ¼                ¼ x O 2  ¼
                   p 0      p 0   n P  p 0  p 0     p 0    n P  p 0  p 0     p 0  2n P p 0
                  Also, from the ideal gas law
                                          p 2 V 2 ¼ n 2 <T 2 ; and p 1 V 1 ¼ n 1 <T 1 :    (12.79)
                  Thus

                                               n P  n 1 T 1  245:65
                                                                :                          (12.80)
                                                  ¼     ¼
                                               p 2  p 1 T 2  T 2
                  Hence, substituting these values in Eqn (12.70) gives
                                                 1
                                                                    2
                                                 2                      2   245:65
                                          2n P p 0
                                  ð1   aÞ                 2   ð1   aÞ
                            K p r  ¼              ; giving K ¼                   p 0       (12.81)
                                                          p r        2
                                           a p 2                           aT 2
                                 ð0:1 þ aÞ
                                                              ð0:1 þ aÞ
                                                                                        2
                  This is an implicit equation in the products temperature, T 2 , because K p ¼ f (T 2 ). Writing K p as X gives
                             2            2                      2
                    Xð0:1 þ aÞ aT 2 ¼ð1   aÞ   2   245:65p 0 ¼ð1   aÞ   2   245:65   1:01325  (12.82)
                  Expanding Eqn (12.82) gives
                                                            2                   3
                            0 ¼ 497:77   að995:54 þ 0:01XT 2 Þþ a ð497:77   0:2XT 2 Þ  a XT 2  (12.83)
                                                                              2
                  The term XT 2 can be evaluated for various temperatures because XT 2 ¼ K T 2
                                                                              p r
                                              T 2 (K)  K p    XT 2
                                               2800   6.582  121303
                                               2900   4.392  55940
                                               3000   3.013  27234
   269   270   271   272   273   274   275   276   277   278   279