Page 279 - Advanced Thermodynamics for Engineers, Second Edition
P. 279
268 CHAPTER 12 CHEMICAL EQUILIBRIUM AND DISSOCIATION
Thus
d d 1 0 0 0 0
y a m þ y b m y c m y d m
ln K p r ¼ a b c d
dT dT <T
(12.96)
d 1 0 0
ym ym
¼ R P
dT <T
Consider definition of m 0
0
m ¼ h 0 þ hðTÞ Tfs 0 þ sðTÞg
Z (12.97)
dh
¼ h 0 þ hðTÞ Ts 0 T :
T
Consider the terms
Z Z
dh hðTÞ dh
hðTÞ T ¼ T (12.98)
T T T
Let
v ¼ hðTÞ dv ¼ dh
1 dT
T T
u ¼ du ¼ 2
Integrating by parts gives
Z Z
hðTÞdT
T ¼ T : (12.99)
dhðTÞ
hðTÞ
T T T 2
Thus
d X y hðTÞ X yhðTÞ
(12.100)
lnK p r ¼ 2 ¼ 2
dT < T <T
Although S has been used as a shorthand form it does include both positive and negative signs;
these must be taken into account when evaluating the significance of the term.
Thus
1
d
lnKp r ¼ 2 ðy a h a þ y b h b y c h c y d y d Þ
dT <T
(12.101)
1
R
¼ 2 ½yh ½yh P
<T
But, by definition
(12.102)
Q p ¼ y c h c þ y d h d y a h a þ y b h b
Hence
d Q p
: (12.103)
lnK p r ¼ 2
dT <T
Equation (12.103) is known as the Van’t Hoff equation. It is useful for evaluating the heat of
reaction for any particular reaction since
<d lnK p r
:
Q p ¼
dð1=TÞ