Page 335 - Advanced engineering mathematics
P. 335

10.3 Solution of X = AX + G   315

                                        This is

                                                            z    1  =  20  z 1  +  −1/4  1/4  8
                                                            z    2  06    z 2    1/4   3/4   4e 3t
                                                                            3t
                                                                   2z 1 − 2 + e
                                                                =            3t  .
                                                                   6z 2 + 2 + 3e
                                        This is an uncoupled system, consisting of one differential equation for just z 1 , and a second
                                        differential equation for just z 2 . Solve each of these first-order linear differential equations to
                                        obtain
                                                                                  3t
                                                                              2t
                                                                     z 1 (t) = c 1 e + e + 1
                                                                                     1
                                                                              6t
                                                                                  3t
                                                                     z 2 (t) = c 2 e − e − .
                                                                                     3
                                        Then
                                                              	      2t  3t
                                                         −3  1    c 1 e + e + 1
                                           X(t) = PZ(t) =
                                                          1  1   c 2 e − e − 1/3
                                                                    6t
                                                                        3t

                                                                         3t
                                                              2t
                                                                                                        3t
                                                         −3c 1 e + c 2 e − 4e − 10/3  −3e 2t  e 6t   −4e − 10/3
                                                                    6t
                                                      =                           =             C +              .
                                                             c 1 e + c 2 e + 2/3       e 2t  e 6t        2/3
                                                                      6t
                                                                2t
                                        This is the general solution in the form  (t)C+  p , which is a sum of the general solution of the
                                        associated homogeneous equation and a particular solution of the nonhomogeneous equation.
                               SECTION 10.3        PROBLEMS
                                                                              ⎛          ⎞ ⎛   −2t  ⎞ ⎛ ⎞
                            In each of Problems 1 through 9, use variation of param-  1  −3  0  te   6
                            eters to find the general solution, with A and G given. If  9. ⎝ 3  −5  0 ⎠ , ⎝ te  −2t ⎠ ; ⎝ 2 ⎠
                                                                                             2 −2t
                            initial conditions are given, also satisfy the initial value  4  7  −2  t e  3
                            problem
                                                                           In each of Problems 10 through 19, find a general solu-
                                      	     t  	                           tion of the system. If initial values are given, also solve the
                                 5   2   −3e
                             1.        ,
                                −2   1    e 3t                             initial value problem.

                                2  −4    1                                 10. x =−2x 1 + x 2 , x =−4x 1 + 3x 2 + 10cos(t)
                             2.        ,                                       1           2
                                1  −2    3t                                11. x = 3x 1 + 3x 2 + 8, x = x 1 + 5x 2 + 4e 3t


                                      	    6t  	                               1             2
                                7  −1    2e                                12. x = x 1 + x 2 + 6e , x = x 1 + x 2 + 4
                                                                                          3t


                             3.        ,                                       1             2
                                1   5    6te  6t


                                                                           13. x = 6x 1 + 5x 2 − 4cos(3t), x = x 1 + 2x 2 + 8
                               ⎛         ⎞ ⎛  2t    ⎞                          1                  2
                                 2  0  0     e cos(3t)                     14. x = 3x 1 − 2x 2 + 3e , x = 9x 1 − 3x 2 + e  2t
                                                                                            2t


                             4. ⎝ 0  6  −4 ⎠ , ⎝  −2  ⎠                        1               2
                                                                                          2t
                                                                                                        2t


                                 0  4  −2      −2                          15. x = x 1 + x 2 + 6e , x = x 1 + x 2 + 2e ;
                                                                               1
                                                                                             2
                                                                              x 1 (0) = 6, x 2 (0) = 0
                                 1   0  0  0     0
                               ⎛            ⎞ ⎛    ⎞


                                 4   3  0  0    −2e  t ⎟                   16. x = x 1 − 2x 2 + 2t, x =−x 1 + 2x 2 + 5;
                                                                               1
                                                                                             2
                               ⎜            ⎟ ⎜
                                             ,
                             5.  ⎜          ⎟ ⎜    ⎟
                               ⎝ 0   0  3  0 ⎠ ⎝ 0 ⎠                          x 1 (0) = 13, x 2 (0) = 12
                                 −1  2  9  1     e t                       17. x = 2x 1 − 5x 2 + 5sin(t), x = x 1 − 2x 2 ;


                                                                               1                 2
                                    	     	   	                               x 1 (0) = 10, x 2 (0) = 5
                                2  0     2    0
                             6.       ,     ;
                                5  2    10t   3                            18. x = 5x 1 − 4x 2 + 4x 3 − 3e −3t  , x = 12x 1 − 11x 2 +


                                                                               1                      2
                                                                              12x 3 + t, x = 4x 1 − 4x 2 + 5x 3 ; x 1 (0) = 1,

                                      	    t
                                5  −4    2e    −1                                     3
                             7.        ,     ;                                x 2 (0) =−1, x 3 (0) = 2
                                4  −3    2e t   3
                                                                           19. x = 3x 1 − x 2 − x 3 , x = x 1 + x 2 − x 3 + t,


                               ⎛         ⎞ ⎛   2t  ⎞ ⎛  ⎞                      1             2
                                 2  −3  1    10e     5                        x = x 1 − x 2 + x 3 + 2e ; x 1 (0) = 1,
                                                                                              t

                                               2t
                                                                               3
                             8. ⎝ 0  2  4 ⎠ , ⎝ 6e ⎠ ; ⎝ 11 ⎠                 x 2 (0) = 2, x 3 (0) =−2
                                 0  0   1    −e  2t  −2
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  20:32  THM/NEIL   Page-315        27410_10_ch10_p295-342
   330   331   332   333   334   335   336   337   338   339   340