Page 335 - Advanced engineering mathematics
P. 335
10.3 Solution of X = AX + G 315
This is
z 1 = 20 z 1 + −1/4 1/4 8
z 2 06 z 2 1/4 3/4 4e 3t
3t
2z 1 − 2 + e
= 3t .
6z 2 + 2 + 3e
This is an uncoupled system, consisting of one differential equation for just z 1 , and a second
differential equation for just z 2 . Solve each of these first-order linear differential equations to
obtain
3t
2t
z 1 (t) = c 1 e + e + 1
1
6t
3t
z 2 (t) = c 2 e − e − .
3
Then
2t 3t
−3 1 c 1 e + e + 1
X(t) = PZ(t) =
1 1 c 2 e − e − 1/3
6t
3t
3t
2t
3t
−3c 1 e + c 2 e − 4e − 10/3 −3e 2t e 6t −4e − 10/3
6t
= = C + .
c 1 e + c 2 e + 2/3 e 2t e 6t 2/3
6t
2t
This is the general solution in the form (t)C+ p , which is a sum of the general solution of the
associated homogeneous equation and a particular solution of the nonhomogeneous equation.
SECTION 10.3 PROBLEMS
⎛ ⎞ ⎛ −2t ⎞ ⎛ ⎞
In each of Problems 1 through 9, use variation of param- 1 −3 0 te 6
eters to find the general solution, with A and G given. If 9. ⎝ 3 −5 0 ⎠ , ⎝ te −2t ⎠ ; ⎝ 2 ⎠
2 −2t
initial conditions are given, also satisfy the initial value 4 7 −2 t e 3
problem
In each of Problems 10 through 19, find a general solu-
t tion of the system. If initial values are given, also solve the
5 2 −3e
1. ,
−2 1 e 3t initial value problem.
2 −4 1 10. x =−2x 1 + x 2 , x =−4x 1 + 3x 2 + 10cos(t)
2. , 1 2
1 −2 3t 11. x = 3x 1 + 3x 2 + 8, x = x 1 + 5x 2 + 4e 3t
6t 1 2
7 −1 2e 12. x = x 1 + x 2 + 6e , x = x 1 + x 2 + 4
3t
3. , 1 2
1 5 6te 6t
13. x = 6x 1 + 5x 2 − 4cos(3t), x = x 1 + 2x 2 + 8
⎛ ⎞ ⎛ 2t ⎞ 1 2
2 0 0 e cos(3t) 14. x = 3x 1 − 2x 2 + 3e , x = 9x 1 − 3x 2 + e 2t
2t
4. ⎝ 0 6 −4 ⎠ , ⎝ −2 ⎠ 1 2
2t
2t
0 4 −2 −2 15. x = x 1 + x 2 + 6e , x = x 1 + x 2 + 2e ;
1
2
x 1 (0) = 6, x 2 (0) = 0
1 0 0 0 0
⎛ ⎞ ⎛ ⎞
4 3 0 0 −2e t ⎟ 16. x = x 1 − 2x 2 + 2t, x =−x 1 + 2x 2 + 5;
1
2
⎜ ⎟ ⎜
,
5. ⎜ ⎟ ⎜ ⎟
⎝ 0 0 3 0 ⎠ ⎝ 0 ⎠ x 1 (0) = 13, x 2 (0) = 12
−1 2 9 1 e t 17. x = 2x 1 − 5x 2 + 5sin(t), x = x 1 − 2x 2 ;
1 2
x 1 (0) = 10, x 2 (0) = 5
2 0 2 0
6. , ;
5 2 10t 3 18. x = 5x 1 − 4x 2 + 4x 3 − 3e −3t , x = 12x 1 − 11x 2 +
1 2
12x 3 + t, x = 4x 1 − 4x 2 + 5x 3 ; x 1 (0) = 1,
t
5 −4 2e −1 3
7. , ; x 2 (0) =−1, x 3 (0) = 2
4 −3 2e t 3
19. x = 3x 1 − x 2 − x 3 , x = x 1 + x 2 − x 3 + t,
⎛ ⎞ ⎛ 2t ⎞ ⎛ ⎞ 1 2
2 −3 1 10e 5 x = x 1 − x 2 + x 3 + 2e ; x 1 (0) = 1,
t
2t
3
8. ⎝ 0 2 4 ⎠ , ⎝ 6e ⎠ ; ⎝ 11 ⎠ x 2 (0) = 2, x 3 (0) =−2
0 0 1 −e 2t −2
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 20:32 THM/NEIL Page-315 27410_10_ch10_p295-342