Page 381 - Advanced engineering mathematics
P. 381

11.4 The Gradient Field  361






                                                                             5

                                                                             4







                                                                                 –4
                                                                               –2
                                                                               –2
                                                                 –4
                                                                       –2 2   0
                                                                       4           2     4

                                                                                        2
                                                                                           2
                                                            FIGURE 11.9 Circular cone z =  x + y .

                                 EXAMPLE 11.8

                                                                       2
                                                                           2
                                        The level surface ϕ(x, y, z) = z −  x + y is a cone with vertex at the origin (Figure 11.9).
                                        Compute
                                                                       √        1     1
                                                                ∇ϕ(1,1, 2) =−√ i − √ j + k.
                                                                                 2    2
                                                                      √
                                        The tangent plane to the cone at (1,1, 2) has the equations
                                                                1          1             √
                                                              −√ (x − 1) − √ (y − 1) + z −  2 = 0
                                                                 2          2
                                        or
                                                                              √
                                                                       x + y −  2z = 0.
                                                                     √
                                        The normal line to the cone at (1,1, 2) has parametric equations
                                                                    1           1      √
                                                             x = 1 − √ t, y = 1 − √ t, z =  2 + t.
                                                                     2           2


                               SECTION 11.4        PROBLEMS



                                                                                            2
                                                                                        2
                                                                                               2
                            In each of Problems 1 through 6, compute the gradient of  6. ϕ(x, y, z) =  x + y + z ;(2,2,2)
                            the function and evaluate this gradient at the given point.
                            Determine at this point the maximum and minimum rate of  In each of Problems 7 through 10, compute the direc-
                            change of the function at this point.          tional derivative of the function in the direction of the given
                                                                           vector.
                            1. ϕ(x, y, z) = xyz;(1,1,1)
                                                                                                 √
                                                                                          2
                                        2
                            2. ϕ(x, y, z) = x y − sin(xz);(1,−1,π/4)       7. ϕ(x, y, z) = 8xy − xz;(1/ 3)(i + j + k)
                                                                                                 z
                                              z
                            3. ϕ(x, y, z) = 2xy + xe ;(−2,1,6)             8. ϕ(x, y, z) = cos(x − y) + e ;i − j + 2k
                                                                                          3
                                                                                        2
                            4. ϕ(x, y, z) = cos(xyz);(−1,1,π/2)            9. ϕ(x, y, z) = x yz ;2j + k
                            5. ϕ(x, y, z) = cosh(2xy) − sinh(z);(0,1,1)    10. ϕ(x, y, z) = yz + xz + xy;i − 4k
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

                                   October 15, 2010  16:11  THM/NEIL   Page-361        27410_11_ch11_p343-366
   376   377   378   379   380   381   382   383   384   385   386