Page 289 - Advanced thermodynamics for engineers
P. 289

12.11 DISSOCIATION PROBLEMS          277




                  From Eqn (12.109), the partial pressures of the constituents are

                                      8ð1   a 1 Þ p
                                    ¼
                               p rCO 2
                                         n P  p 0
                                      8a 1 p                           9ð1   a 2 Þ p
                                p rCO ¼                         p rH 2 O ¼
                                      n P p 0                             n P  p 0
                                      ð1:389 þ 4a 1 þ 4:5a 2 Þ p       9a 2 p
                                    ¼                                ¼
                                p rO 2                           p rH 2
                                              n P        p 0           n P p 0
                  Hence

                                                         2         n P       p 0
                                                ½8ð1   a 1 ފ
                                 K 2  ¼ 43:3164 ¼                                         (12.111)
                                  p r1                2   ð1:389 þ 4a 1 þ 4:5a 2 Þ p
                                                  ½8a 1 Š
               and
                                      9ð1   a 2 Þ  8a 1   ð1   a 2 Þ  a 1
                                    ¼                   ¼                                 (12.112)
                                 K p r2
                                         9a 2  8ð1   a 1 Þ  a 2  ð1   a 1 Þ
                         equation (Eqn (12.111)) contains a pressure term, but this can be replaced by the tem-
                  The K p r
               perature of the products by applying the perfect gas law to the mixture. Then
                                                  p P V P ¼ n P <T P
                                                                                          (12.113)
                                                  p R V R ¼ n R <T R
                  Thus
                                               n P  n R <T R  n R T R
                                                  ¼       ¼                               (12.114)
                                               p P  p R <T P  p R T P
                  Substituting gives
                                                      2
                                 2             ð1   a 1 Þ       n R T R
                                K  ¼ 43:3164 ¼         	                      p 0         (12.115)
                                 p r1              2
                                                  a 1   1:389 þ 4a 1 þ 4:5a 2 p R T P
                  Inserting values for these parameters gives
                                    43:3164   10   2800       ð1   a 1 Þ 2
                                                      ¼   	                               (12.116)
                                                         2
                                       67:111   500     a 1:389 þ 4a 1 þ 4:5a 2
                                                         1
               which can be expanded to give
                                         3
                                             2

                                  144:58a þ a 49:2052 þ 162:652a 2 þ 2a 1   1 ¼ 0         (12.117)

                                         1
                                             1
                  This equation contains both a 1 and a 2 . If it is assumed that a 1 >> a 2 then Eqn (12.117) is a cubic
               equation in a 1 . Based on this assumption the value of a 1 is approximately 0.11. Substituting this value
               in Eqn (12.112) gives a 2 ¼ 0.017776, which vindicates the original assumption. Recalculation around
               this loop gives
   284   285   286   287   288   289   290   291   292   293   294