Page 290 - Advanced thermodynamics for engineers
P. 290

278    CHAPTER 12 CHEMICAL EQUILIBRIUM AND DISSOCIATION




                                                a 1 ¼ 0:108
                                                a 2 ¼ 0:01742
                These values are close enough solutions for the dissociation coefficients and for the chemical
             equation (Eqn (12.109) which becomes

                  C 8 H 18 þ 13:889ðO 2 þ 3:76N 2 Þ
                  |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
                           n R ¼67:111
                                                                                        (12.118)
                  / 7:136CO 2 þ 8:84322H 2 O þ 0:846CO þ 0:15678H 2 þ 1:8994O 2 þ 52:222N 2
                     |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
                                                 n P ¼71:121
                This equation satisfies the equilibrium constraints and the chemistry of the problem, but it still has
             to be checked to see if it meets the First Law. The First Law is defined by the equation

                                                                                        (12.119)
                                 U P T P   U P T s ¼ ðQ v Þ þ U R T R   U R T s
                                                       s
                Note two things about this equation. First, it is more convenient to evaluate the difference between
             the internal energies of the products because now the composition of the products is also a function of
             temperature and hence U P (T s ) is not a constant. Second, with dissociation, (Q v ) s is not the full value of
             the internal energy of reaction of octane because not all the octane has been oxidised fully to CO 2 and
             water. The value of (Q v ) s in this case is given by

                      	  ~
                       Q   ¼ðQ v Þ   0:108   8  ð 283000Þ  0:01742   9  ð 241827Þ
                        v s      s
                           ¼ 5116320 þ 244512 þ 37913:6                                 (12.120)
                           ¼ 4833894 kJ=kmol octane



             ALTERNATIVE METHOD FOR CALCULATING THE ENERGY RELEASED
             BY COMBUSTION
             The energy released from partial combustion can be calculated using Hess’ law. In this case, from
             Table 9.4,

                   ~     X           X
                 DU 0 ¼      DU 0         DU 0
                        Products   Reactants
                     ¼ 7:136ðDU 0 Þ  þ 8:84322ðDU 0 Þ H 2 O  þ 0:846ðDU 0 Þ CO   ðDU 0 Þ
                                 CO 2                                      C 8 H 18

                     ¼ 7:136  ð 393405Þþ 8:84322  ð 239082Þþ 0:846  ð 113882Þ ð 74897Þ
                     ¼ 4943040 kJ=kmol C 8 H 18 burned
                                                                                        (12.121)

                This value can be related to the energy released at the standard temperature of 25 C by the

             following equation (*note, the fuel properties have been based on methane because those of octane
             were not available).
   285   286   287   288   289   290   291   292   293   294   295