Page 484 - Advanced thermodynamics for engineers
P. 484

476    CHAPTER 20 IRREVERSIBLE THERMODYNAMICS





                Substituting for L 22 ,L 12 and L 21 in Eqns (20.29) and (20.30) gives
                                                   L 11 dT     dε
                                            J Q ¼          lTS                           (20.37)
                                                   T d‘        d‘
             and

                                                   lTS dT     dε

                                             J I ¼          l                            (20.38)
                                                    T   d‘    d‘
                Now if there is zero current flow (i.e. J I ¼ 0), Fourier’s law of heat conduction may be applied
             giving
                                                  dQ=dt     dT
                                             J Q ¼      ¼ k                              (20.39)
                                                    A        d‘
                However, if J I ¼ 0 then Eqn (20.38) gives
                                                 dε       dT
                                                   ¼ S                                   (20.40)
                                                 d‘      d‘
                Substituting this value for dε/d[ in Eqn (20.37) gives

                                              kdT     L 11 dT    2  dT
                                       J Q ¼     ¼          þ lS T                       (20.41)
                                              d‘       T d‘        d‘
                Hence

                                                           2
                                              L 11 ¼ k þ lTS  T                          (20.42)
                Substituting the coefficients into Eqns (20.29) and (20.30) gives the following:

                                                                 dT     dε
                                  for heat flow  J Q ¼  k þ lTS  2    lTS                (20.43)
                                                                d‘      d‘
                                                               dT   dε
                                      for electrical flow  J I ¼ lS      l               (20.44)
                                                               d‘    d‘
                The entropy flux is obtained from Eqn (20.31).

                                                        2
                                                k þ lTS   dT     dε
                                         J S ¼                 lS                        (20.45)
                                                    T     d‘     d‘

                                                                                   J Q
                                                                                        . This is
                It is possible to define another parameter, the heat of transport Q*, where Q ¼
                                                                                    J I
                                                                                       T
             basically the ‘thermal energy’ which is transported by a flow of electrical energy when there is no
             temperature gradient, and indicates the magnitude of the off-diagonal terms in the cross-coupling
             matrix in Eqn (20.8a).
                From Eqns (20.43) and (20.44), when dT ¼ 0

                                       J Q           dε       dε
                                            ¼   lTS         l     ¼ TS                   (20.46)
                                       J I           d‘       d‘
                                          T
   479   480   481   482   483   484   485   486   487   488   489