Page 86 - Advances in bioenergy (2016)
P. 86
from sweet sorghum juice using very high gravity technology: effects of carbon and
nitrogen supplementations. Bioresour Technol 2009, 100:4176–4182.
99. Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF.
Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by
Saccharomyces cerevisiae. J Chem Technol Biotechnol 2007, 82:340–349.
100. Wright J, Bellissimi E, de Hulster E, Wagner A, Pronk JT, van Maris AJA. Batch and
continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting
Saccharomyces cerevisiae. FEMS Yeast Res 2011, 11:299–306.
101. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT. Evolutionary
engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae
strain. FEMS Yeast Res 2005, 5:925–934.
102. Liu EK, Hu Y. Construction of a xylose-fermenting Saccharomyces cerevisiae strain by
combined approaches of genetic engineering, chemical mutagenesis and evolutionary
adaptation. Biochem Eng J 2010, 48:204–210.
103. Bailey JE, Shurlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS. Inverse metabolic
engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol
Bioeng 1996, 52:109–121.
104. Oud B, van Maris AJA, Daran JM, Pronk JT. Genome-wide analytical approaches for
reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast
Res 2012, 12:183–196.
105. Stanley D, Chambers PJ, Stanley GA, Borneman A, Fraser S. Transcriptional changes
associated with ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol
Biotechnol 2010, 88:231–239.
106. Bailey JE. Toward a science of metabolic engineering. Science 1991, 252:1668–1675.
107. Laadan B, Almeida JRM, Radstrom P, Hahn-Hagerdal B, Gorwa-Grauslund M.
Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol
dehydrogenase in Saccharomyces cerevisiae. Yeast 2008, 25:191–198.
108. Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway
engineering based on metabolomics confers acetic and formic acid tolerance to a
recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact
2011, 10:2.
109. Cai Z, Zhang B, Li Y. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose
fermentation: reflections and perspectives. Biotechnol J 2012, 7:34–46.
110. Ohgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hagerdal B, Zacchi G.
Simultaneous saccharification and co-fermentation of glucose and xylose in steam-