Page 342 - Advances in Biomechanics and Tissue Regeneration
P. 342
340 16. ON THE SIMULATION OF ORGAN-ON-CHIP CELL PROCESSES
References
[1] K.D. Miller, R.L. Siegel, C.C. Lin, A.B. Mariotto, J.L. Kramer, J.H. Rowland, K.D. Stein, R. Alteri, A. Jemal, Cancer treatment and survivorship
statistics, 2016, CA Cancer J. Clin. 66 (4) (2016) 271–289.
[2] J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, Cancer incidence and mortality world-
wide: sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer 136 (5) (2015) E359–E386.
[3] A. Nagelkerke, J. Bussink, A.E. Rowan, P.N. Span, The mechanical microenvironment in cancer: how physics affects tumours, in: Seminars in
Cancer Biology, vol. 35, Elsevier, 2015, pp. 62–70.
[4] S. Huang, D.E. Ingber, Cell tension, matrix mechanics, and cancer development, Cancer Cell 8 (3) (2005) 175–176.
[5] S.J. Mousavi, M.H. Doweidar, M. Doblar e, Cell migration and cell-cell interaction in the presence of mechano-chemo-thermotaxis, Mol. Cell
Biomech. 10 (1) (2013) 1–25.
[6] S.J. Mousavi, M. Doblar e, M.H. Doweidar, Computational modelling of multi-cell migration in a multi-signalling substrate, Phys. Biol. 11 (2)
(2014) 026002.
[7] D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell 144 (5) (2011) 646–674.
[8] D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis, Nat. Med. 19 (11) (2013) 1423.
[9] K.J. Harrington, Biology of cancer, Medicine 39 (12) (2011) 689–692.
[10] V. Espina, L.A. Liotta, What is the malignant nature of human ductal carcinoma in situ? Nat. Rev. Cancer 11 (1) (2011) 68.
[11] P. Mehlen, A. Puisieux, Metastasis: a question of life or death, Nat. Rev. Cancer 6 (6) (2006) 449.
[12] J.W. Scannell, A. Blanckley, H. Boldon, B. Warrington, Diagnosing the decline in pharmaceutical R&D efficiency, Nat. Rev. Drug Discov. 11 (3)
(2012) 191.
[13] G.P. Nolan, What’s wrong with drug screening today, Nat. Chem. Biol. 3 (4) (2007) 187.
[14] R. Edmondson, J.J. Broglie, A.F. Adcock, L. Yang, Three-dimensional cell culture systems and their applications in drug discovery and cell-based
biosensors, Assay Drug Dev. Technol. 12 (4) (2014) 207–218.
[15] C. Wang, Z. Tang, Y. Zhao, R. Yao, L. Li, W. Sun, Three-dimensional in vitro cancer models: a short review, Biofabrication 6 (2) (2014) 022001.
[16] E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research, Nature 507 (7491) (2014) 181.
[17] S.N. Bhatia, D.E. Ingber, Microfluidic organs-on-chips, Nat. Biotechnol. 32 (8) (2014) 760.
[18] J.A. Jim enez-Torres, S.L. Peery, K.E. Sung, D.J. Beebe, LumeNEXT: a practical method to pattern luminal structures in ECM gels, Adv. Health-
care Mater. 5 (2) (2016) 198–204.
[19] A. Boussommier-Calleja, R. Li, M.B. Chen, S.C. Wong, R.D. Kamm, Microfluidics: a new tool for modeling cancer-immune interactions, Trends
Cancer 2 (1) (2016) 6–19.
[20] I.K. Zervantonakis, S.K. Hughes-Alford, J.L. Charest, J.S. Condeelis, F.B. Gertler, R.D. Kamm, Three-dimensional microfluidic model for tumor
cell intravasation and endothelial barrier function, Proc. Natl Acad. Sci. USA 109 (34) (2012) 13515–13520.
[21] J.S. Jeon, S. Bersini, M. Gilardi, G. Dubini, J.L. Charest, M. Moretti, R.D. Kamm, Human 3D vascularized organotypic microfluidic assays to
study breast cancer cell extravasation, Proc. Natl Acad. Sci. USA 112 (1) (2015) 214–219.
[22] S. Bersini, J.S. Jeon, G. Dubini, C. Arrigoni, S. Chung, J.L. Charest, M. Moretti, R.D. Kamm, A microfluidic 3D in vitro model for specificity of
breast cancer metastasis to bone, Biomaterials 35 (8) (2014) 2454–2461.
[23] T.S. Deisboeck, G.S. Stamatakos, Multiscale Cancer Modeling, CRC Press, 2010, pp. 359–383.
[24] D.J. Brat, Glioblastoma: biology, genetics, and behavior, in: American Society of Clinical Oncology Educational Book, AmericanSociety of Clin-
ical Oncology. Meeting, 2012, pp. 102–107. https://doi.org/10.14694/edbookam.2012.32.102.
[25] T. Oike, Y. Suzuki, K.-I. Sugawara, K. Shirai, S.-E. Noda, T. Tamaki, M. Nagaishi, H. Yokoo, Y. Nakazato, T. Nakano, Radiotherapy plus con-
comitant adjuvant temozolomide for glioblastoma: Japanese mono-institutional results, PLoS ONE 8 (11) (2013) e78943.
[26] D.J. Brat, A.A. Castellano-Sanchez, S.B. Hunter, M. Pecot, C. Cohen, E.H. Hammond, S.N. Devi, B. Kaur, E.G. Van Meir, Pseudopalisades in
glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population, Cancer Res. 64 (3)
(2004) 920–927.
[27] Y. Rong, D.L. Durden, E.G. Van Meir, D.J. Brat, “Pseudopalisading” necrosis in glioblastoma: a familiar morphologic feature that links vascular
pathology, hypoxia, and angiogenesis, J. Neuropathol. Exp. Neurol. 65 (6) (2006) 529–539.
[28] D.J. Brat, E.G. Van Meir, Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in
glioblastoma, Lab. Invest. 84 (4) (2004) 397.
[29] C.-H. Hsieh, C.-H. Lee, J.-A. Liang, C.-Y. Yu, W.-C. Shyu, Cycling hypoxia increases U87 glioma cell radioresistance via ROS induced higher and
long-term HIF-1 signal transduction activity, Oncol. Rep. 24 (6) (2010) 1629–1636.
[30] H.M. Byrne, T. Alarcon, M.R. Owen, S.D. Webb, P.K. Maini, Modelling aspects of cancer dynamics: a review, Philos. Trans. R. Soc. Lond.
A Math. Phys. Eng. Sci. 364 (1843) (2006) 1563–1578.
[31] M.E. Katt, A.L. Placone, A.D. Wong, Z.S. Xu, P.C. Searson, In vitro tumor models: advantages, disadvantages, variables, and selecting the right
platform, Front. Bioeng. Biotechnol. 4 (2016) 12.
[32] K.R. Swanson, E.C. Alvord, J.D. Murray, A quantitative model for differential motility of gliomas in grey and white matter, Cell Prolif. 33 (5)
(2000) 317–329.
[33] E.L. Bearer, J.S. Lowengrub, H.B. Frieboes, Y.-L. Chuang, F. Jin, S.M. Wise, M. Ferrari, D.B. Agus, V. Cristini, Multiparameter computational
modeling of tumor invasion, Cancer Res. 69 (10) (2009) 4493–4501.
[34] R.L. Jensen, Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target, J. Neurooncol. 92 (3)
(2009) 317–335, https://doi.org/10.1007/s11060-009-9827-2.
[35] C. Suarez, F. Maglietti, M. Colonna, K. Breitburd, G. Marshall, Mathematical modeling of human glioma growth based on brain topological
structures: study of two clinical cases, PLoS ONE 7 (6) (2012) e39616.
[36] E. Scribner, O. Saut, P. Province, A. Bag, T. Colin, H.M. Fathallah-Shaykh, Effects of anti-angiogenesis on glioblastoma growth and migration:
model to clinical predictions, PLoS ONE 9 (12) (2014) e115018.
[37] Y. Kim, H. Jeon, H. Othmer, The role of the tumor microenvironment in glioblastoma: a mathematical model, IEEE Trans. Biomed. Eng. 64 (3)
(2017) 519–527.
II. MECHANOBIOLOGY AND TISSUE REGENERATION