Page 380 - Advances in Eco-Fuels for a Sustainable Environment
P. 380
Physicochemical fuel properties and tribological behavior of aegle marmelos correa biodiesel 335
[7] Mansir N, Teo SH, Rashid U, Taufiq-Yap YH. Efficient waste Gallus domesticus shell
derived calcium-based catalyst for biodiesel production. Fuel 2018;211:67–75. https://
doi.org/10.1016/j.fuel.2017.09.014.
[8] Madheshiya AK, Vedrtnam A. Energy-exergy analysis of biodiesel fuels produced from
waste cooking oil and mustard oil. Fuel 2018;214:386–408. https://doi.org/10.1016/j.
fuel.2017.11.060.
[9] Kumar M, Sharma MP. Selection of potential oils for biodiesel production. Renew Sustain
Energy Rev 2016;56:1129–38. https://doi.org/10.1016/j.rser.2015.12.032.
[10] Bhuiya MMK, Rasul MG, Khan MMK, Ashwath N, Azad AK, Hazrat MA. Prospects of
2nd generation biodiesel as a sustainable fuel - Part 2: properties, performance and emis-
sion characteristics. Renew Sustain Energy Rev 2016;55:1129–46. https://doi.org/
10.1016/j.rser.2015.09.086.
[11] Salaheldeen M, Aroua MK, Mariod AA, Cheng SF, Abdelrahman MA, Atabani AE. Phys-
icochemical characterization and thermal behavior of biodiesel and biodiesel-diesel
blends derived from crude Moringa peregrina seed oil. Energy Convers Manag
2015;92:535–42. https://doi.org/10.1016/j.enconman.2014.12.087.
[12] Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, et al.
Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions,
biodiesel production, characteristics, engine performance and emissions production.
Renew Sustain Energy Rev 2013;18:211–45. https://doi.org/10.1016/j.rser.2012.
10.013.
[13] Rahimi M, Aghel B, Alitabar M, Sepahvand A, Ghasempour HR. Optimization of biodie-
sel production from soybean oil in a microreactor. Energy Convers Manag 2014;79:
599–605. https://doi.org/10.1016/j.enconman.2013.12.065.
[14] Al-Hamamre Z, Yamin J. Parametric study of the alkali catalyzed transesterification of
waste frying oil for Biodiesel production. Energy Convers Manag 2014;79:246–54.
https://doi.org/10.1016/j.enconman.2013.12.027.
[15] Wakil MA, Kalam MA, Masjuki HH, Atabani AE, Rizwanul Fattah IM. Influence of bio-
diesel blending on physicochemical properties and importance of mathematical model for
predicting the properties of biodiesel blend. Energy Convers Manag 2015;94:51–67.
https://doi.org/10.1016/j.enconman.2015.01.043.
[16] Khan TMY, Atabani AE, Badruddin IA, Badarudin A, Khayoon MS, Triwahyono S.
Recent scenario and technologies to utilize non-edible oils for biodiesel production.
Renew Sustain Energy Rev 2014;37:840–51. https://doi.org/10.1016/j.rser.2014.
05.064.
[17] Caldeira C, Freire F, Olivetti EA, Kirchain R. Fatty acid based prediction models for bio-
diesel properties incorporating compositional uncertainty. Fuel 2017;196:13–20. https://
doi.org/10.1016/j.fuel.2017.01.074.
[18] Silitonga AS, Masjuki HH, Mahlia TMI, Ong HC, Chong WT, Boosroh MH. Overview
properties of biodiesel diesel blends from edible and non-edible feedstock. Renew Sustain
Energy Rev 2013;22:346–60. https://doi.org/10.1016/j.rser.2013.01.055.
[19] Ong HC, Silitonga AS, Masjuki HH, Mahlia TMI, Chong WT, Boosroh MH. Production
and comparative fuel properties of biodiesel from non-edible oils: jatropha curcas,
Sterculia foetida and Ceiba pentandra. Energy Convers Manag 2013;73:245–55. https://
doi.org/10.1016/j.enconman.2013.04.011.
[20] Dwivedi G, Sharma MP. Impact of cold flow properties of biodiesel on engine perfor-
mance. Renew Sustain Energy Rev 2014;31:650–6. https://doi.org/10.1016/j.rser.2013.
12.035.