Page 380 - Advances in Eco-Fuels for a Sustainable Environment
P. 380

Physicochemical fuel properties and tribological behavior of aegle marmelos correa biodiesel  335

            [7] Mansir N, Teo SH, Rashid U, Taufiq-Yap YH. Efficient waste Gallus domesticus shell
               derived calcium-based catalyst for biodiesel production. Fuel 2018;211:67–75. https://
               doi.org/10.1016/j.fuel.2017.09.014.
            [8] Madheshiya AK, Vedrtnam A. Energy-exergy analysis of biodiesel fuels produced from
               waste cooking oil and mustard oil. Fuel 2018;214:386–408. https://doi.org/10.1016/j.
               fuel.2017.11.060.
            [9] Kumar M, Sharma MP. Selection of potential oils for biodiesel production. Renew Sustain
               Energy Rev 2016;56:1129–38. https://doi.org/10.1016/j.rser.2015.12.032.
           [10] Bhuiya MMK, Rasul MG, Khan MMK, Ashwath N, Azad AK, Hazrat MA. Prospects of
               2nd generation biodiesel as a sustainable fuel - Part 2: properties, performance and emis-
               sion characteristics. Renew Sustain Energy Rev 2016;55:1129–46. https://doi.org/
               10.1016/j.rser.2015.09.086.
           [11] Salaheldeen M, Aroua MK, Mariod AA, Cheng SF, Abdelrahman MA, Atabani AE. Phys-
               icochemical characterization and thermal behavior of biodiesel and biodiesel-diesel
               blends derived from crude Moringa peregrina seed oil. Energy Convers Manag
               2015;92:535–42. https://doi.org/10.1016/j.enconman.2014.12.087.
           [12] Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, et al.
               Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions,
               biodiesel production, characteristics, engine performance and emissions production.
               Renew Sustain Energy Rev 2013;18:211–45. https://doi.org/10.1016/j.rser.2012.
               10.013.
           [13] Rahimi M, Aghel B, Alitabar M, Sepahvand A, Ghasempour HR. Optimization of biodie-
               sel production from soybean oil in a microreactor. Energy Convers Manag 2014;79:
               599–605. https://doi.org/10.1016/j.enconman.2013.12.065.
           [14] Al-Hamamre Z, Yamin J. Parametric study of the alkali catalyzed transesterification of
               waste frying oil for Biodiesel production. Energy Convers Manag 2014;79:246–54.
               https://doi.org/10.1016/j.enconman.2013.12.027.
           [15] Wakil MA, Kalam MA, Masjuki HH, Atabani AE, Rizwanul Fattah IM. Influence of bio-
               diesel blending on physicochemical properties and importance of mathematical model for
               predicting the properties of biodiesel blend. Energy Convers Manag 2015;94:51–67.
               https://doi.org/10.1016/j.enconman.2015.01.043.
           [16] Khan TMY, Atabani AE, Badruddin IA, Badarudin A, Khayoon MS, Triwahyono S.
               Recent scenario and technologies to utilize non-edible oils for biodiesel production.
               Renew Sustain Energy Rev 2014;37:840–51. https://doi.org/10.1016/j.rser.2014.
               05.064.
           [17] Caldeira C, Freire F, Olivetti EA, Kirchain R. Fatty acid based prediction models for bio-
               diesel properties incorporating compositional uncertainty. Fuel 2017;196:13–20. https://
               doi.org/10.1016/j.fuel.2017.01.074.
           [18] Silitonga AS, Masjuki HH, Mahlia TMI, Ong HC, Chong WT, Boosroh MH. Overview
               properties of biodiesel diesel blends from edible and non-edible feedstock. Renew Sustain
               Energy Rev 2013;22:346–60. https://doi.org/10.1016/j.rser.2013.01.055.
           [19] Ong HC, Silitonga AS, Masjuki HH, Mahlia TMI, Chong WT, Boosroh MH. Production
               and comparative fuel properties of biodiesel from non-edible oils: jatropha curcas,
               Sterculia foetida and Ceiba pentandra. Energy Convers Manag 2013;73:245–55. https://
               doi.org/10.1016/j.enconman.2013.04.011.
           [20] Dwivedi G, Sharma MP. Impact of cold flow properties of biodiesel on engine perfor-
               mance. Renew Sustain Energy Rev 2014;31:650–6. https://doi.org/10.1016/j.rser.2013.
               12.035.
   375   376   377   378   379   380   381   382   383   384   385