Page 72 - Advances in Eco-Fuels for a Sustainable Environment
P. 72
Ecofuel feedstocks and their prospects 49
[16] Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, et al. Microalgae-based car-
bohydrates for biofuel production. Biochem Eng J 2013;78:1–10. https://doi.org/10.1016/
j.bej.2013.03.006.
[17] Pedersen TC, Gardner RD, Gerlach R, Peyton BM. Assessment of Nannochloropsis
gaditana growth and lipid accumulation with increased inorganic carbon delivery.
J Appl Phycol 2018;1–12. https://doi.org/10.1007/s10811-018-1470-x.
[18] Stockton N. Fattened, genetically engineered algae might fuel the future, Wired. https://
www.wired.com/story/synthetic-genomics-genetically-engineered-algae-might-fuel-the-
future; 2017.
[19] Bharathiraja B, Sudharsanaa T, Bharghavi A, Jayamuthunagai J, Praveenkumar R. Bio-
hydrogen and biogas–an overview on feedstocks and enhancement process. Fuel
2016;185:810–28. https://doi.org/10.1016/j.fuel.2016.08.030.
[20] Ryckebosch E, Drouillon M, Vervaeren H. Techniques for transformation of biogas to
biomethane. Biomass Bioenergy 2011;35:1633–45. https://doi.org/10.1016/j.biombioe.
2011.02.033.
[21] Patterson T, Esteves S, Dinsdale R, Guwy A. An evaluation of the policy and techno-
economic factors affecting the potential for biogas upgrading for transport fuel use in
the UK. Energy Policy 2011;39:1806–16. https://doi.org/10.1016/j.enpol.2011.01.017.
[22] Van Foreest F. Perspectives for biogas in Europe, Oxford Institute for Energy Studies;
2012. http://citeseerx.ist.psu.edu/viewdoc/download?doi¼10.1.1.398.2718&rep¼rep1&
type¼pdf.
[23] Capodaglio AG, Callegari A, Lopez MV. European framework for the diffusion of biogas
uses: emerging technologies, acceptance, incentive strategies, and institutional-regulatory
support. Sustain For 2016;8:1–18. https://doi.org/10.3390/su8040298.
[24] Raboni M, Urbini G. Production and use of biogas in Europe: a survey of current status and
´
perspectives. doi: Ambient Agua-An InterdiscipJ Appl Sci 2014;9:191–202. https://doi.
org/10.4136/ambi-agua.1324.
[25] European Environmental Agency (EEA)Estimating the environmentally compatible bio-
energy potential from agriculture; 2007. https://doi.org/10.2800/13734.
[26] Baskar G, Aiswarya R. Trends in catalytic production of biodiesel from various feedstocks.
Renew Sust Energ Rev 2016;57:496–504. https://doi.org/10.1016/j.rser.2015.12.101.
[27] Nurfitri I, Pragas G, Hindryawati N, Yusoff MM. Potential of feedstock and catalysts from
waste in biodiesel preparation: a review. Energy Convers Manag 2013;74:395–402.
https://doi.org/10.1016/j.enconman.2013.04.042.
[28] Kiss AA. Heat-integrated process for biodiesel by reactive absorption. Comput Aided
Chem Eng 2010;28:1111–6. https://doi.org/10.1016/S1570-7946(10)28186-5.
[29] Cheng JJ, Timilsina GR. Status and barriers of advanced biofuel technologies: a review.
Renew Energy 2011;36:3541–9. https://doi.org/10.1016/j.renene.2011.04.031.
[30] Mussatto SI, Dragone G, Guimara ˜es PMR, Silva JPA, Carneiro LM, Roberto IC, et al.
Technological trends, global market, and challenges of bio-ethanol production. Biotechnol
Adv 2010;28:817–30. https://doi.org/10.1016/j.biotechadv.2010.07.001.
[31] Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S. Bioethanol production: feedstock
and current technologies. J Environ Chem Eng 2014;2:573–84. https://doi.org/10.1016/j.
jece.2013.10.013.
[32] Trindade WR da S, dos SRG. Review on the characteristics of butanol, its production and
use as fuel in internal combustion engines. Renew Sust Energ Rev 2017;69:642–51.
https://doi.org/10.1016/j.rser.2016.11.213.
[33] Bardiya N, Gaur AC. Effects of carbon and nitrogen ratio on rice straw bio-methanation.
J Rural Energy 1997;4:1–16.