Page 74 - Advances in Eco-Fuels for a Sustainable Environment
P. 74
Ecofuel feedstocks and their prospects 51
[52] Adeniyi OM, Azimov U, Burluka A. Algae biofuel: current status and future applications.
Renew Sust Energ Rev 2018;90:316–35. https://doi.org/10.1016/j.rser.2018.03.067.
[53] Markou G, Angelidaki I, Georgakakis D. Microalgal carbohydrates: an overview of the
factors influencing carbohydrates production, and of main bioconversion technologies
for production of biofuels. Appl Microbiol Biotechnol 2012;96:631–45. https://doi.org/
10.1007/s00253-012-4398-0.
[54] Nakanishi A, Bae JG, Fukai K, Tokumoto N, Kuroda K, Ogawa J, et al. Effect of pre-
treatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol
fermentation. Appl Microbiol Biotechnol 2012;94:939–48. https://doi.org/10.1007/
s00253-012-3876-8.
[55] Hasheminejad M, Tabatabaei M, Mansourpanah Y, far MK, Javani A. Upstream and
downstream strategies to economize biodiesel production. Bioresour Technol
2011;102:461–8. https://doi.org/10.1016/j.biortech.2010.09.094.
[56] Majidian P, Tabatabaei M, Zeinolabedini M, Naghshbandi MP, Chisti Y. Metabolic engi-
neering of microorganisms for biofuel production. Renew Sust Energ Rev
2018;82:3863–85. https://doi.org/10.1016/j.rser.2017.10.085.
[57] Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martı ´n HG. Synthetic and sys-
tems biology for microbial production of commodity chemicals. NPJ Syst Biol Appl
2016;2:16009. https://doi.org/10.1038/npjsba.2016.9.
[58] Koppolu V, Vasigala VK. Role of Escherichia coli in biofuel production. Microbiol
Insights 2016;9:MBI.S10878. https://doi.org/10.4137/MBI.S10878.
[59] Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, et al. Metabolic
engineering of antibiotic factories: new tools for antibiotic production in actinomycetes.
Trends Biotechnol 2015;33:15–26. https://doi.org/10.1016/j.tibtech.2014.10.009.
[60] Medema MH, Cimermancic P, Sali A, Takano E, Fischbach MA. A systematic compu-
tational analysis of biosynthetic gene cluster evolution: lessons for engineering biosyn-
thesis. PLoS Comput Biol 2014;10:1–12. https://doi.org/10.1371/journal.pcbi. 1004016.
[61] Alonso-Gutierrez J, Kim EM, Batth TS, Cho N, Hu Q, Chan LJG, et al. Principal compo-
nent analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab Eng
2015;28:123–33. https://doi.org/10.1016/j.ymben.2014.11.011.
[62] Tang X, Feng H, Zhang J, Chen WN. Comparative proteomics analysis of engineered Sac-
charomyces cerevisiae with enhanced biofuel precursor production. PLoS One
2013;8:1–10. https://doi.org/10.1371/journal.pone.0084661.
[63] George KW, Chen A, Jain A, Batth TS, Baidoo EEK, Wang G, et al. Correlation analysis
of targeted proteins and metabolites to assess and engineer microbial isopentenol produc-
tion. Biotechnol Bioeng 2014;111:1648–58. https://doi.org/10.1002/bit.25226.
[64] Wu SG, Wang Y, Jiang W, Oyetunde T, Yao R, Zhang X, et al. Rapid prediction of bac-
terial heterotrophic fluxomics using machine learning and constraint programming. PLoS
Comput Biol 2016;12:1–22. https://doi.org/10.1371/journal.pcbi.1004838.
[65] Colling Klein B, Bonomi A, Maciel Filho R. Integration of microalgae production with
industrial biofuel facilities: a critical review. Renew Sust Energ Rev 2018;82:1376–92.
https://doi.org/10.1016/j.rser.2017.04.063.