Page 137 - Advances in Renewable Energies and Power Technologies
P. 137
110 CHAPTER 3 Forecasting of Intermittent Solar Energy Resource
[17] B. Robyns, A. Davigny, C. Saudemont, A. Ansel, V. Courtecuisse, B. Francois,
S. Plumel, J. Deuse, J3eA, Impact de l’e ´olien sur le re ´seau de transport et la qualite ´
de l’e ´nergie, vol. 5, 2006 (in French).
[18] M. Black, G. Strbac, Value of storage in providing balancing services for electricity
generation systems with high wind penetration, J. Power Sources 162 (2006) 949e953.
[19] D. Anderson, M. Leach, Harvesting and redistributing renewable energy: on the role of
gas and electricity grids to overcome intermittency through the generation and storage
of hydrogen, Energy Policy 32 (14) (2004) 1603e1614.
[20] L. Bird, M. Milligan, D. Lew, Integrating Variable Renewable Energy: Challenges and
Solutions, Technical Report, NREL/TP-6A20e60451, Contract No. DE-AC36-
08GO28308, 2013.
[21] A. Moreno-Munoz, J.J.G. De la Rosa, R. Posadillo, F. Bellido, Very short term fore-
casting of solar radiation, in: 33rd IEEE Photovoltaic Specialists Conference, 2008.
PVSC ’08, 2008.
[22] S.A. Papathanassiou, N.G. Boulaxis, Power limitations and energy yield evaluation for
wind farms operating in island systems, Renew. Energy 31 (2006) 457e479.
[23] M. Paulescu, E. Paulescu, P. Gravila, V. Badescu, Weather Modeling and Forecasting of
PV Systems Operation, Green Energy and Technology, Springer, London, 2013.
[24] H.M. Diagne, P. Lauret, M. David, Solar irradiation forecasting: state-of-the-art and
proposition for future developments for small-scale insular grids, in: Proc. WREF
2012-World Renewable Energy Forum, May 2012, Denver, United States, 2012.
[25] B. Elliston, I. MacGill, The potential role of forecasting for integrating solar generation
into the Australian national electricity market, in: Solar 2010: Proc Annual Conference
of the Australian Solar Energy Society, 2010.
[26] P. Lauret, C. Voyant, T. Soubdhan, M. David, P. Poggi, A benchmarking of machine
learning techniques for solar radiation forecasting in an insular context, Solar Energy
112 (2015) 446e457.
[27] T.C. McCandless, S.E. Haupt, G.S. Young, Short term solar radiation forecast using
weather regime dependent artificial intelligence techniques, in: 2th Conference on Arti-
ficial and Computational Intelligence and its Applications to the Environmental Sci-
ences. February 02e06, 2014, Atlanta, USA, 2014.
[28] A. Sjoerd Brouwer, M. Van den Broek, A. Seebregts, A. Faaij, Impacts of large-scale
intermittent renewable energy sources on electricity systems, and how these can be
modeled, Renew. Sustain. Energy Rev. 33 (2014) 443e466.
[29] M. Milligan, P. Donohoo, D. Lew, E. Ela, B. Kirby, H. Holttinen, E. Lannoye, D. Flynn,
M. O’Malle, M. Miller, P. Børre Eriksen, A. Gøttig, B. Rawn, M. Gibescu, E. Go ´mez
La ´zaro, A. Robitaille, I. Kamwa, Operating reserves and wind power integration: an in-
ternational comparison preprint, in: 9th Annual International Workshop on Large-Scale
Integration of Wind Power into Power Systems as well as on Transmission Networks for
Offshore Wind Power Plants Conference Que ´bec, Canada; October 18e19, 2010, 2010.
[30] H.M. Diagne, M. David, P. Lauret, J. Boland, N. Schmutz, Review of solar irradiance
forecasting methods and a proposition for small-scale insular grids, Renew. Sustain. En-
ergy Rev. 27 (2013) 65e76.
[31] G. Koeppel, M. Korpa ˚s, Improving the network infeed accuracy of non-dispatchable
generators with energy storage devices, Elec. Power Syst. Res. 78 (2008) 2024e2036.
[32] D. Masa-Bote, M. Castillo-Cagigal, E. Matallanas, E. Caaman ˜o-Martı ´n, A. Gutie ´rrez,
F. Monasterio-Huelı ´n, J. Jime ´nez-Leube, Improving photovoltaics grid integration
through short time forecasting and self-consumption, Appl. Energy 125 (2014) 103e113.