Page 279 - Advances in Textile Biotechnology
P. 279

260    Advances in textile biotechnology


              10.10 Acknowledgments

              We acknowledge financial support from the MICINN (projects MAT 2007–
              66275-C02–01, MAT 2009-14195-C03-03 and PSE-300100-2006-1), the JCyL
              (projects VA034A09 and VA030A08), the CIBER-BBN (project CB06-01-
              0003), the JCyL and the Instituto de Salud Carlos III under the ‘Network
              Center of Regenerative Medicine and Cellular  Therapy of Castilla and
              León’ and the COST Action 868.

              10.11 References

              altman, g h, diaz, f, jakuba, c, calabro, t, horan, r l, chen, j s, lu, h, richmond, j
                and kaplan, d l (2003), ‘Silk-based biomaterials’, Biomaterials, 24, 401–416. doi:
                10.1016/S0142-9612(02)00353-8.
              annabi,  n,  mithieux,  s  m,  weiss,  a  s and  dehghani,  f (2009), ‘The fabrication of
                elastin-based hydrogels using high pressure CO 2 ’,  Biomaterials,  30, 1–7. doi:
                10.1016/j.biomaterials.2008.09.031.
              arnau, j, lauritzen, c, petersen, g e and pedersen, j, (2006), ‘Current strategies for


                the use of affinity tags and tag removal for the purification of recombinant pro-
                teins’ Protein Expr purif, 48, 1–13. doi: 10.1016/j.pep.2005.12.002.
              bolanos-garcia, v m and davies, o r (2006), ‘Structural analysis and classifi cation
                of native proteins from E. coli commonly co-purified by immobilized metal affi n-

                ity chromatography’,  Biochim Biophys  Acta,  1760, 1304–1313. doi: 10.1016/j.
                bbagen.2006.03.027.
              buttafoco,  l,  kolkman,  n  g,  engbers-buijtenhuijs,  p,  poot,  a  a,  dijkstra,  p  j,
                vermes, i and feijen, j (2006), ‘Electrospinning of collagen and elastin for tissue
                engineering applications’,  Biomaterials,  27, 724–734. doi: 10.1016/j.biomateri-
                als.2005.06.024.
              cappello,  j,  crissman,  j,  dorman,  m,  mikolajczak,  m,  textor,  g,  marquet,  m and
                ferrari, f (1990), ‘Genetic engineering of structural protein polymers’, Biotechnol
                Prog, 6, 198–202. doi: 10.1021/bp00003a006.
              chen, j, wang, q, hua, z and du, g (2007), ‘Research and application of biotechnol-
                ogy in textile industries in China’, Enzyme Microb Technol, 40, 1651–1655. doi:
                10.1016/j.enzmictec.2006.07.040.
              chilkoti, a, dreher, m r and meyer, d e (2002), ‘Design of thermally responsive,
                recombinant polypeptide carriers for targeted drug delivery’, Adv Drug Delivery
                Rev, 54, 1093–1111. doi: 10.1016/S0169-409X(02)00060-1.
              chou, c (2007), ‘Engineering cell physiology to enhance recombinant protein pro-
                duction in Escherichia coli’, Appl Microbiol Biotechnol, 76, 521–532. doi: 10.1007/
                s00253-007-1039-0.
              chow, d, nunalee, m l, lim, d w, simnick, a j and chilkoti, a (2008), ‘Peptide-based
                biopolymers in biomedicine and biotechnology’, Mater Sci Eng R Rep, 62, 125–
                155. doi: 10.1016/j.mser.2008.04.004.

              di zio, k and tirrell, d a (2003), ‘Mechanical properties of artificial protein matri-
                ces engineered for control of cell and tissue behavior’, Macromolecules, 36, 1553–
                1558. doi: 10.1021/ma0256587.
              elvin, c m, carr, a g, huson, m g, maxwell, j m, pearson, r d, vuocolo, t, liyou,
                n e, wong, d c c, merritt, d j and dixon, n e (2005), ‘Synthesis and properties



                                © Woodhead Publishing Limited, 2010
   274   275   276   277   278   279   280   281   282   283   284